Refine Your Search

Topic

Search Results

Technical Paper

Transforming AADL Models Into SysML 2.0: Insights and Recommendations

2024-03-05
2024-01-1947
In recent years, the increasing complexity of modern aerospace systems has driven the rapid adoption of robust Model-Based Systems Engineering (MBSE). MBSE is a development methodology centered around computational models, which are instrumental in supporting the design and analysis of intricate systems. In this context, the Architecture Analysis and Design Language (AADL) and Systems Modeling Language (SysML) are two prominent modeling languages for specifying and analyzing the structure and behavior of a cyber-physical system. Both languages have their own specific use cases and tool environments and are typically employed to model different aspects of system design. Although multiple software tools are available for transforming models from one language to another, their effectiveness is limited by fundamental differences in the semantics of each language.
Technical Paper

Terrain Streaming for Real-Time Vehicle Dynamics

2024-04-09
2024-01-2659
This paper describes an approach to integrating high-fidelity vehicle dynamics with a high-fidelity gaming engine, specifically with respect to terrain. The work is motivated by the experimental need to have both high-fidelity visual content with high-fidelity vehicle dynamics to drive a motion base simulator. To utilize a single source of terrain information, the problem requires the just-in-time sharing of terrain content between the gaming engine and the dynamics model. The solution is implemented as a client-server with the gaming engine acting as a stateless server and the dynamics acting as the client. The client is designed to actively maintain a locally cashed terrain grid around the vehicle and actively refresh it by polling the server in an on-demand mode of operation. The paper discusses the overall architecture, the protocol, the server, and the client designs. A practical implementation is described and shown to effectively function in real-time.
Magazine

Tech Briefs: May 2018

2018-05-01
New Technologies Tackle UAV Challenges Robotic Applique Kits Leverage Existing Assets Educating UGVs Implementing AI Advancements in Thermal Image Training Data Sets Protecting Critical Data on Unmanned Underwater Platforms Advancements Made to the Wingman Software-in-the-Loop (SIL) Simulation: How to Operate the SIL New features include the creation of virtual environments that match real-world gunnery test courses. Soldier-Robot Team Communication: An Investigation of Exogenous Orienting Visual Display Cues and Robot Reporting Preferences The effective use of robots to conduct dangerous missions depends on accurate man-machine communications. Soft Robotic Fish Swims Alongside Real Ones in Coral Reefs GPS Enabled Semi-Autonomous Robot Combining GPS signals with acoustic and encoder data gives a robot the ability to determine its location and orientation within a reference frame.
Magazine

Tech Briefs: June 2018

2018-06-01
Beyond VMEbus - A New Concept Taming the Thermal Behavior of Solid-State Military Lasers Solving the Challenge of Thermal Design in Aerospace Electronics Improving Component Life in Abrasive, Corrosive Aerospace Environments New Pulse Analysis Techniques for Radar and EW Validation of Ubiquitous 2D Radar Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments Technological improvements make pulsed-power experiments with gunpowder- or air-driven guns safer. Low-Cost Ground Sensor Network for Intrusion Detection COTS-based system could provide increased level of security with less manpower. In-Network Processing on Low-Cost IoT Nodes for Maritime Surveillance Commercially available system of distributed wireless sensors could increase the Navy's intelligence collection footprint.
Magazine

Tech Briefs: April 2018

2018-04-01
Laser Detecting Systems Enhancing Survivability and Lethality on the Battlefield Designing With Plastics for Military Equipment Engine Air-Brakes Paving the Way to Quieter Aircraft Nett Warrior Enhancing Battlefield Connectivity and Communications XPONENTIAL 2018 - An AUVSI Experience Communications in Space: A Deep Subject First Air-Worthy Metal-Printed RF Filter Ready for Takeoff Validation of Automated Prediction of Blood Product Needs Algorithm Processing Continuous Non-Invasive Vital Signs Streams (ONPOINT4) Using a combination of non-invasive sensors, advanced algorithms, and instruments built for combat medics could reduce hemorrhaging and improve survival rates. Calculation of Weapon Platform Attitude and Cant Using Available Sensor Feedback Successful development of mobile weapon systems must incorporate operation on sloped terrain.
Journal Article

TOC

2024-02-12
Abstract TOC
Article

SAE International extends call for abstracts, seeks submissions for AeroTech conference

2022-08-11
Engineering Events staff at SAE International in Warrendale, Pennsylvania, have extended the call for abstracts through September 21 for the organization’s AeroTech aerospace and defense technology conference, which will take place at the Fort Worth Convention Center in Fort Worth, Texas, March 14-16, 2023. Visit the AeroTech call for abstracts page for more information and to get started.
Standard

Reliability Physics Analysis of Electrical, Electronic, and Electromechanical Equipment, Modules and Components

2021-12-30
CURRENT
J3168_202112
This recommended practice has been developed for use in any EEE system used in the AADHP industries. RPA is especially important to AADHP systems, which are often safety critical applications that must operate for long times in rugged environments. These EEE systems often use EEE components that were originally designed and produced for more benign consumer applications. Although the focus of this recommended practice is on AADHP applications, the process described herein is not limited to AADHP and may be used for EEE systems and components in any industry.
Technical Paper

Optimizing Occupant Restraint Systems for Tactical Vehicles in Frontal Crashes

2018-04-03
2018-01-0621
The objective of this study was to optimize the occupant restraint systems for a light tactical vehicle in frontal crashes. A combination of sled testing and computational modeling were performed to find the optimal seatbelt and airbag designs for protecting occupants represented by three size of ATDs and two military gear configurations. This study started with 20 sled frontal crash tests to setup the baseline performance of existing seatbelts, which have been presented previously; followed by parametric computational simulations to find the best combinations of seatbelt and airbag designs for different sizes of ATDs and military gear configurations involving both driver and passengers. Then 12 sled tests were conducted with the simulation-recommended restraint designs. The test results were further used to validate the models. Another series of computational simulations and 4 sled tests were performed to fine-tune the optimal restraint design solutions.
Technical Paper

On Simulating Sloshing in Vehicle Dynamics

2018-04-03
2018-01-1110
We present an approach in which we use simulation to capture the two-way coupling between the dynamics of a vehicle and that of a fluid that sloshes in a tank attached to the vehicle. The simulation is carried out in and builds on support provided by two modules: Chrono::FSI (Fluid-Solid Interaction) and Chrono::Vehicle. The dynamics of the fluid phase is governed by the mass and momentum (Navier-Stokes) equations, which are discretized in space via a Lagrangian approach called Smoothed Particle Hydrodynamics. The vehicle dynamics is the solution of a set of differential algebraic equations of motion. All equations are discretized in time via a half-implicit symplectic Euler method. This solution approach is general - it allows for fully three dimensional (3D) motion and nonlinear transients. We demonstrate the solution in conjunction with the simulation of a vehicle model that performs a constant radius turn and double lane change maneuver.
Technical Paper

Numerical Analysis of Lightweight Materials and their Combinations to Understand their Behaviour against High Pressure Shock Loading

2023-05-25
2023-28-1311
Materials play a key role in our day to day life and have shaped the industrial revolution to a great extent. Right selection of material for meeting a particular objective is the key to success in today’s world where the cost as well as sustainability of any equipment or a system have assumed greater significance than ever before. In automotive industry, materials have a definitive role as far as the mobility and safety is concerned. Materials that can absorb the required energy or impact can be manufactured through different manufacturing as well as metallurgical processes which involves appropriate heat treatment and bringing correct chemical compositions etc. However, they can also be formed by simpler methods such as combining certain materials together in the form of layered combinations to form light weight composites.
Journal Article

Numerical Analysis of Armored Fighting Vehicle Escape Hatch Subjected to Mine Blast Loading Using Coupled Eulerian-Lagrangian Technique

2023-03-30
Abstract This article describes the research work taken to compare the effect of air blast and surface-buried mine blast loading on an armored fighting vehicle (AFV) escape hatch, using the coupled Eulerian-Lagrangian (CEL) technique. Two types of escape hatch were considered for the study, namely, the flat plate version and double-side curved-plate version. To evaluate the research methodology used in this investigation, initially, a published experimental work on a circular plate subjected to air blast was chosen and a benchmark simulation was carried out using the CEL technique to establish the simulation procedure. Then the established procedure was utilized for further analysis. It was observed that the variation in the deformation between the published literature and the simulation work was well within the acceptable engineering limits.
Training / Education

Nonferrous Metals Bundle

Anytime
Nonferrous materials are malleable, are non-magnetic, and have no iron content which gives them higher resistance to rust and corrosion. The following five eLearning courses are included in the Nonferrous Metals bundle.  Each course is approximately one-hour in duration. See Topics/Outline for additional details. Introduction to Physical Properties  This course provides an an overview of manufacturing materials and their physical properties, including thermal, electrical, and magnetic properties and introduces volumetric characteristics, such as mass, weight, and density.
Training / Education

Model-Based Systems Engineering (MBSE)

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). As the complexity of products increases, traditional text-based systems engineering can no longer meet the needs. To solve the problem, Model-based Systems Engineering offers a unified communication platform among relevant staff by carrying out diagram-based unambiguous description, analysis and design for the demand, and structure and behavior of complex systems in the form of a model.
Training / Education

Model-Based Engineering Overview for Systems Management Practitioners

Use of Model-Based Systems Engineering (MBSE) has been growing across industry, extending beyond defense and aerospace to include various commercial enterprises such as automotive and healthcare. Tool vendors are quick to point out benefits of this model-based approach and practices but are not always clear how MBSE benefits can be realized on a project. When deployed successfully, several key considerations should be addressed that maximize the value for a use-case. This four-hour class will discuss the nature and purpose of the MBSE approach and how key information is used for successful MBSE deployment as it relates to Systems Management.
Training / Education

Metals Bundle

Anytime
Almost 75% of all elements are metals. Metals can be classified as either ferrous or non-ferrous and generally conduct electricity and heat well. Most metals are malleable and ductile and are, in general, heavier than other elemental substances. The following six eLearning courses are included in the Materials bundle. Each course is approximately one-hour in duration. See topics/outline for additional details. Introduction to Metals, Ferrous Metals, Nonferrous Metals, Classification of Steel, Essentials of Heat Treatment of Steel Exotic Alloys
X