Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 18112
Technical Paper

“Personal Integrity” and Man-Machine Integration

1982-02-01
821348
A sense of “personal integrity” blocks pilot use of new information about how he thinks. Research on human performance under stress done over the past fifty years indicates increased rigidity and regression to earlier learned behavior in high stress, and in low Stress a shift in attention to any domestic situation or on the job controversy which is of higher stress than that of the job at hand, all without the pilot's knowledge. Informal surveys of commercial pilot training and commercial pilot attitudes towards these studies indicate that the study findings directly confront learned cultural responses. Pilot and trainer reactions prevent the information from being adequately investigated or formally taught. The findings are not written into training manuals and pilots who are informally given the information do not have adequate access to the knowledge when it is needed.
Technical Paper

“Optimization” of Lower Deck Cargo Systems

1988-05-01
880973
The ability to carry cargo efficiently in passenger aircraft has influenced airline economics to the point that optimisation of the freight capacity is mandatory. This document discusses the alternative loading possibilities in defined Lover Deck Compartments and their doors to cater for current and future trends in ULD dimensions. As a result items for study centred on: 1) Optimisation of the available volumes Freight capacity resulting in the selection of “Pallets”-doors for both the Forward and AFT Compartments. Flexibility to meet Freight and Baggage requirements. Possible load arrangements to optimize aircraft C of G 2) Bulk Cargo Compartment Additional LD3 Container position in AFT/Bulk compartment to cater for an uneven number of Baggage container, allowing the carriage of an additional pallet. What is regarded as an optimum is presented.
Technical Paper

“Melmoth”-An Experimental Private Aircraft

1975-02-01
750546
“Melmoth,” an amateur-designed and built light airplane, has a number of features unusual in general aviation aircraft, aiming to combine comfort, high cruising speed, aerobatic capability and transoceanic range in a single compact machine. Among these are high wing loading, large internal fuel capacity, variable aileron incidence, double-slotted Fowler flap, automatic fuel tank switching, internal cowl flaps, and an all-flying T-tail.
Technical Paper

“Insert and Fly” Using PCMCIA PC Cards in the Avionics Market

1994-11-01
942553
When looking into using PCMCIA PC Cards in the avionics market, three areas must be researched. The first is what are the applications and benefits of using the PC Cards while in flight, followed by the applications and benefits on the ground, and thirdly on how to make a PC Card that would stand up to the rugged avionics environment. PCMCIA PC Cards can be used in all aspects of flight. Three possible applications on the ground are; paperless documentation, modifications, flightline changes. Once airborne, PC Cards can be removed and a different functionality card can be inserted. One PC card socket can be used for many different functions during one flight. Some of the possible applications for PC Cards inflight are; flight plan changes, backup Line Replaceable Units (LRUs), and solid state data collection.
Technical Paper

“Greater Than the Sum of its Parts” Integrated Flight Training/Aircrew Coordination

1994-10-01
942132
The requirement for crew resource management (CRM), or aircrew coordination training (ACT) in military parlance, has been well documented and attested to. In addition, aircraft systems training has become more intense and more in-depth in the new aircraft designs, especially in multi-crew and complex aircraft such as the MV-22 Osprey Tiltrotor. (see Figure 1) Former training systems detailed training procedures that called for classroom training and simulation/simulator training followed by flight training. Improvements in aircraft flight skills training provide increased flying training capability coupled with reduced training time by integrating a mixed simulation/flight training syllabus, e.g. two to three simulation periods followed by one or two flight training periods covering the same material/skills. In addition, the simulation training will introduce new skills; the following flight periods will further refine/hone those skills.
Technical Paper

“Flexible” Cargo Handling Systems for Standard-Body Airplanes

1986-09-01
861153
The manner in which the lower deck cargo compartments of standard-body airplanes are designed, equipped, and serviced has not changed appreciably over the past 50 years. A number of factors now at work within the air transportation industry are causing carriers and airplane manufacturers to explore alternative approaches to these tasks. This paper reviews these factors, presents a new approach to lower deck cargo handling systems design, and describes how this approach can be applied to standard-body airplanes.
Technical Paper

“Electric Aircraft” Pioneer The Focke-Wulf Fw 190

1996-10-01
965631
The Focke-Wulf Fw 190 was one of the truly outstanding fighter aircraft of the Second World War. It distinguished itself over all fronts on which the Luftwaffe fought in conditions ranging from arctic wastes to the deserts of North Africa. The Fw 190 represented the epitome of conventional piston-engine fighter design on the threshold of the jet age. Conceived nearly sixty years ago, flying for the first time on the eve of the war in 1939 and acknowledged as “the best all-around fighter in the world” in the mid-war years, derivatives of the Fw 190 were still pushing the ultimate capability boundary for this class of aircraft at war's end in 1945 (reaching maximum level true airspeeds of 470 mph [about Mach 0.7] at altitudes of well over 40,000 feet). This paper assesses the design attributes and technology approaches, including innovative use of advanced electrical systems, that were used to make the Fw 190 one of the great all-around fighters in aviation history.
Technical Paper

“Aviation Transportation Security”

2003-03-03
2003-01-1346
This essay presents a brief history of aviation security measures, including problems exploited by terror attacks such as those of September 11th. Recent policy modifications are also discussed. Finally, conclusions are drawn and rationally developed into a policy proposal for developing a more secure system of domestic aviation transportation.
Technical Paper

‘Skins’ by Design: Humans to Habitats

2003-07-07
2003-01-2655
Whether we live on land, underwater, or out there in space, what makes it possible is our ‘skin’. The one we were born with, the one we wear, the one we live in, and the one we travel in. The skin is a response to where we live: it protects as our first line of defense against a hostile environment; it regulates as part of our life-support system; and, it communicates as our interface to everything within and without. In the context of space architecture – we, our space suits, vehicles and habitats are all equipped with highly specialized ‘skins’ that pad us, protect us and become an integral part of the design expression. This paper approaches the subject from a holistic perspective considering ‘skins’ and their manifestation as structure, as vessel, as texture, and as membrane. The paper then goes on to showcase innovative use of materials in practice through two case studies: the ‘spacesuit’ and ‘inflatable habitats’.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

ways of improving TAKE-OFF AND LANDING

1960-01-01
600026
SOME POSSIBILITIES for shortening the field length requirements of present-day jet aircraft are: Install leading-edge, high-lift devices which are retrofitable to present-day aircraft. Retrofit — or purchase new — aircraft powered by turbofan engines. These have an inherently higher take-off thrust to cruise thrust ratio than the jets, which vastly improves the take-off acceleration. Use boundary-layer control actuated by turbine discharge gas for immediate consideration in new aircraft engines. Use direct-lift jet engines. These will improve the block speed characteristics of the aircraft and also give vertical take-off and landing capabilities. This paper discusses the advantages of each of these possibilities. The author also describes the problem of airport location within a city, and its effect of total travel time.*
Technical Paper

the first year of the JET AGE . . . .reflections

1960-01-01
600059
THE FIRST YEAR of jet airline operation has brought many problems — and satisfactions — to the industry. Here the author discusses some of the more serious problems: 1. Scheduling. American Airlines used the “Monte Carlo” method to calculate payloads and flight times. 2. Baggage handling. Almost nothing annoys a passenger more than long waits for baggage at the end of a flight. One approach to the problem is the baggage expediter system. 3. Mechanical shutdowns. 4. Runway length. 5. Noise. Noise suppressors have not been effective enough, from the standpoint of communities surroundings airports. Development of the turbofan engine offers some hope in this area.*
Technical Paper

selection of Optimum Modes of Control for aircraft engines

1959-01-01
590047
THE optimum mode of control for an aircraft engine is dependent on both the configuration of the engine and its application. Each engine application requires several detail modes of control, one for each definable regime of operation of the engine. Discussions of control requirements can be simplified by classifying these regimes by objectives: physical limiting, thrust, and transient control. The turbojet engine is the basis for the discussion in this paper. Acceptable modes of control can often be selected by inspection of the engine and its application. Selection of an “optimum” control mode requires investigation of the operation of the engine and weapons system at every stage of its use. The selection of a “mode” of control requires a compromise between performance and other design factors. The need for simplicity and accuracy must be balanced against the stability requirements. The availability and flexibility of control components may limit the modes of control considered.
Article

magniX and AeroTEC to fly all-electric eCaravan May 28

2020-05-21
Mobility is in the midst of an electric revolution, propelled by industry innovators such as magniX. Headquartered in Redmond, Washington, the magniX team is focused on revolutionizing electric motors for commercial aviation applications.
Technical Paper

euces Software Development

2008-06-29
2008-01-2072
The euces project was initiated to be prepared for the future role of EADS as stage system prime for stage and launcher developments. Launcher stages for NGLV need to meet ambitious mission and operational demands. The paper will present a brief overview of the currently existing COMPONENT libraries and its possibilities as well as an application example which will be a simplified functional model of the ARIANE 5 EPS upper stage w.r.t. physical model formulation of its incorporated components, its schematic, data initialisation and simulation results obtained. The simulation results will be compared to flight data of a dedicated flight.
X