Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“itron” Vacuum Fluorescent Display Dot Matrix Graphic Display with Characteristics

1980-02-01
800359
In recent years, with the development of information system products, the types of display devices utilized are becoming more sophisticated and complicated. Displays of earlier stages are now being replaced by 5×7 dot type displays which allow the display of functional symbols as well as alphanumerics. The dot type display is being developed into a dot matrix type as a more sophisticated product, in the latest stage. A great feature of the dot matrix type display is that it allows display not only of numerals, the alphabet, and other functional symbols but also of graphic features.
Technical Paper

“Taguchi Customer Loss Function” Based Functional Requirements

2018-04-03
2018-01-0586
Understanding customer expectations is critical to satisfying customers. Holding customer clinics is one approach to set winning targets for the engineering functional measures to drive customer satisfaction. In these clinics, customers are asked to operate and interact with vehicle systems or subsystems such as doors, lift gates, shifters, and seat adjusters, and then rate their experience. From this customer evaluation data, engineers can create customer loss or preference functions. These functions let engineers set appropriate targets by balancing risks and benefits. Statistical methods such as cumulative customer loss function are regularly applied for such analyses. In this paper, a new approach based on the Taguchi method is proposed and developed. It is referred to as Taguchi Customer Loss Function (TCLF).
Technical Paper

“Smart Panel” Electronic Circuit Breaker Control Technology

2008-11-11
2008-01-2880
This paper will discuss using Astronics “Smart Panel” illuminated control panels to control an electronic power distribution system. A discussion of wiring simplification, automatic control possibilities and real time load monitoring is presented. The challenges of retrofitting the system into older aircraft will be covered as well. The paper also explains Electronic Circuit Breaker technology, arc fault protection, panel lighting technologies, control bus options, displays, and human input technology (buttons and knobs).
Technical Paper

“SHIFT-MATE” A Fuel Efficiency Monitor

1985-12-01
852340
The SHIFT-MATE is a dashboard mounted computer based device that cues a truck driver to shift more efficiently. Through electronic circuitry, key vehicle parameters are monitored, computed, then via graphic display, instructs the driver when to shift for improved fuel economy. The theory of operation is described in the text.
Technical Paper

“Prediction of In-Cylinder Pressure, Temperature, and Loads Related to the Crank Slider Mechanism of I.C. Engines: A Computational Model”

2003-03-03
2003-01-0728
This paper describes the initial works related to the study of Internal Combustion Engines, as an object of mechanical design, at the Universidad Tecnológica de Pereira. It is reported a concise, complete methodology for simple model of internal combustion engine. The emphasis of the paper is placed on the use of the in-cylinder parameters (pressure and temperature) and inertial loads in the crank-slider mechanism to derive the loads that act on all the components of the crank-slider mechanism as well as the theoretical output torque for a given geometrical structure and inertial properties. These loads can then be used to estimate the preliminary dimensions of engine components in the initial stage of engine development. To obtain the pressure and temperature inside the cylinder, under different operation parameters, such as air fuel ratio and spark angle advance, a Zero dimensional model is applied. The heat transfer from the cylinder and friction are not taken into account.
Technical Paper

“Nucleate Boiling Investigations and the Effects of Surface Roughness”

1999-03-01
1999-01-0577
The findings presented in this paper are part of a long term project aimed at raising the science of heat transfer in internal combustion engine cooling galleries. Initial work has been undertaken by the authors and an experimental facility is able to simulate different sizes of coolant passages. External heat is applied and data for the forced convective, nucleate boiling and transition or critical heat flux (CHF) regimes has been obtained. The results highlighted in this paper attempt to quantify the effects of cooling passage surface roughness on the nucleate boiling regime. Tests have been conducted using aluminium test pieces with surface finishes described as smooth, intermediate and as-cast. It has been found that the as-cast surface increases the heat flux density in the nucleate boiling region over that of the smooth and intermediate surfaces.
Technical Paper

“Next Generation” Means for Detecting Squeaks and Rattles in Instrument Panels

1997-05-20
972061
Engineers doing squeak and rattle testing of instrument panels (IP's) have successfully used large electrodynamic vibration systems to identify sources of squeaks and rattles (S&R's). Their successes led to demands to test more IP's, i.e., to increase throughput of IP's to reflect the many design, material, and/or manufacturing process changes that occur, and to do so at any stage of the development, production, or QA process. What is needed is a radically different and portable way to find S&R's in a fraction of the time and at lower capital cost without compromising S&R detection results.
Technical Paper

“Multi Vector” Field of View Design Tool

2004-03-08
2004-01-0380
A multi vector design tool to accurately predict instrument panel obscuration was developed to insure that critical legal displays in vehicles are not obscured. The concept provides for a computer generated light source shaped to replicate the human eyes. The light source is then projected onto a 3D math based arrangement and the resultant shadows are visible on the instrument panel surface and its displays. Design studios require criteria for the placement of the instrument cluster gages and displays, various controls, switches, and steering column stalks before an interior theme can be completed. Therefore, instrument panel obscuration and visibility must be determined early in the design process. The obscured areas are a function of the instrument panel surface, steering wheel rim, hub, spokes, and the location of the driver's eyes. This light source method allows engineers and designers the ability to quickly determine obscured areas.
Technical Paper

“Derivation of Conduction Heat Transfer in Thin Shell Toroids”

2000-07-10
2000-01-2487
This paper presents the derivation of the equations for circumferential, longitudinal and radial heat transfer conductance for a thin shell toroid or a segment of the toroid. A thin shell toroid is one in which the radius to thickness ratio is greater than 10. The equations for the surface area of a toroid or of a toroidal segment will also be derived along with the equation to determine the location of the centroid. The surface area is needed to determine the radial conductance in the toroid or toroidal segment and the centroid is needed to determine the heat transfer center of the toroid or toroidal segment for circumferential and longitudinal conductance. These equations can be used to obtain more accurate results for conductive heat transfer in toroid which is a curved spacecraft components. A comparison will be made (1) using the equations derived in this paper which takes into account the curvature of the toroid (true geometry) and (2) using flat plates to simulate the toroid.
Technical Paper

“Chip on Glass” Technology for Large Scale Automotive Displays

1984-02-01
840148
Large scale automotive displays e.g., liquid crystal displays, require chip on glass technology at least for the driver-ICs. In this paper different IC-packages, metallization, bonding and encapsulation techniques are compared and conclusions for production methods are drawn.
Technical Paper

‘Issues and Behaviors of Airborne Particulate Matters under Microgravity Environment’

2004-07-19
2004-01-2328
During several ISS missions, there were false alarms at both US and Russian smoke detectors. High local airborne particulate concentrations and interior deposits are considered the causes for such anomalies. Alternatives are proposed to replace or complement these faulty smoke detectors. The entrained zeolite particles may play a role in causing problems with check valves and air save pumps in CDRA and Vozdukh. Another incidence has been the dispersion of particulates out of Metox regeneration oven. Particulate matters with aerodynamic diameter of 15 microns and above, which normally settle down on earth, stay airborne under micro-gravity and thereby cause the above-mentioned nuisances. The motion of such a particle along a gas stream with an initial velocity can be expressed by theoretical equations. Stokes' Law leads to the descriptions of inertial precipitation of aerosols that are important in solving the issues.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

some development problems with Large Cryogenic Propellant Systems

1960-01-01
600022
HEAT TRANSFER causes loading and starting design problems in large missile systems powered by cryogenic propellants. This manifests itself during loading as effective density variation, violent surface conditions, boiloff, and ice formation — problems which may be solved by insulating the tank. During starting it causes overheating and caviation — effects which may be reduced by recirculators and subcooled charge injections. The study described in this paper centers around liquid oxygen and its variations in heat flux rate, which affect liquid density, surface condition, and replenishing requirements. The problem areas are made apparent by consideration of a hypothetical missile system.*
Technical Paper

p>Thermomechanical Analysis of the Cylinder Head and Cylinder Block with the Liner of AFV Diesel Engine

2011-10-06
2011-28-0118
This paper deals with the Coupled thermo mechanical analysis of a cylinder head, cylinder block and crank case with the liner of an uprated engine. The existing engine develops 780 hp output with mechanical driven supercharger and the engine is uprated to 1000 hp by replacing the supercharger with a turbocharger and new Fuel injection equipment. For uprating any engine, the piston and cylinder head are the most vulnerable members due to increased mechanical and thermal loadings. Mechanical loading is due to the gas pressure in the gas chamber and its magnitude can be judged in terms of peak pressure. Thermal loading is due to temperature and the heat transfer conditions in the piston surface, cylinder liner and the cylinder head. The relative importance of the various loads applied on the head and cylinder block in operation are assessed and a method of predicting their influence on the structural integrity of the components described.
Technical Paper

modeFRONTIER for Virtual Design and Optimization of Compact Heat Exchangers

2014-09-30
2014-01-2406
The main purpose of this study is the development of an innovative methodology for Heat Exchangers (HE) design to replace the conventional design procedures. The new procedure is based on the definition of a software package managed by modeFRONTIER, a multi-objective optimization software produced by ESTECO, able to create HE virtual models by targeting several objectives, like HE performance, optimal use of material, HE minimal weight and size and optimal manufacturability. The proposed methodology consists first in the definition of a workflow for the automatic CFD simulation of a parametric model of a periodic HE cellular element.
Technical Paper

e-Thermal: Automobile Air-Conditioning Module

2004-03-08
2004-01-1509
e-Thermal is a vehicle level thermal analysis tool developed by General Motors to simulate the transient performance of the entire vehicle HVAC and Powertrain cooling system. It is currently in widespread (global) use across GM. This paper discusses the details of the air-conditioning module of e-Thermal. Most of the literature available on transient modeling of the air conditioning systems is based on finite difference approach that require large simulation times. This has been overcome by appropriately modeling the components using Sinda/Fluint. The basic components of automotive air conditioning system, evaporator, condenser, compressor and expansion valve, are parametrically modeled in Sinda/Fluint. For each component, physical characteristics and performance data is collected in form of component data standards. This performance data is used to curve fit parameters that then reproduce the component performance.
Technical Paper

e-Thermal: A Vehicle-Level HVAC/PTC Simulation Tool

2004-03-08
2004-01-1510
This paper describes a vehicle-level simulation model for climate control and powertrain cooling developed and currently utilized at GM. The tool was developed in response to GM's need to speed vehicle development for HVAC and powertrain cooling to meet world-class program execution timing (18 to 24 month vehicle development cycles). At the same time the simulation tool had to complement GM's strategy to move additional engineering responsibility to its HVAC suppliers. This simulation tool called “e-Thermal” was quickly developed and currently is in widespread (global) use across GM. This paper describes GM's objectives and requirements for developing e-Thermal. The structure of the tool and the capabilities of the simulation tool modules (refrigeration, front end airflow, passenger compartment, engine, transmission, Interior air handling …) is introduced. Model data requirements and GM's strategy for acquiring component data are also described.
Technical Paper

Zone of Influence of Porous Suction Tubes in Condensing Heat Exchanger for Space Systems

2008-06-29
2008-01-2075
A “next generation” condensing heat exchanger for space systems has to satisfy demanding operational requirements under variable thermal and moisture loads and reduced gravity conditions. Mathematical models described here are used to investigate transient behavior of wetting and de-wetting dynamics in the binary porous system of porous tubes and porous cold plate. The model is based on the Richard's equation simplified for the zero-gravity conditions. The half-saturation distance or the zone of influence of the porous annular suction tubes on the cold-plate porous material will be in the range of 1 to 10 cm for the time scales ranging from 100 to 10,000 seconds and moisture diffusivity in the range of D = 10-4 to 10-6 m2/s.
Technical Paper

Zinc Distribution in Vacuum Brazed Alclad Brazing Sheet

1978-02-01
780301
Vacuum brazing technology is currently capable of producing aluminum automotive heat exchangers such as radiators and heater cores. The possible use of 7072 claddings on the surfaces exposed to the coolant to provide additional corrosion protection is of considerable interest. This paper describes the effect of typical vacuum brazing cycles on the distribution of zinc in 7072 clad vacuum brazing sheet. For heavier gauges (.05″), there is sufficient retained zinc in the post-braze composite. For lighter gauges (.02″ or less), nominal composition 7072 does not provide adequate retained zinc; however, if the initial zinc concentration is increased to 3% there is sufficient retained zinc so that the cladding is significantly more anodic than the core.
Technical Paper

Zinc Brazing of Automotive Aluminum Heat Exchangers

1993-03-01
930152
Provision of a layer of zinc on aluminium to provide the fillets for soldering is well established but this usually necessitates a thick layer of zinc (>30μm) and soldering at temperatures below 450°C. New technology has been developed to enable sound joints to be made on aluminium heat exchangers using a much thinner layer of zinc (4 to 8 μm typically) on the aluminium component to provide the joint. By the correct combination of flux and zinc coating thickness, joints have been obtained over a wide range of heating conditions. Preferred temperature cycles are similar to those used by the industry today for brazing of Aluminium:Silicon braze-clad aluminium components which should facilitate tranfer by industry to the new technology.
X