Refine Your Search




Search Results

Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

“Spacematic” Monitoring System

Pneumatic, manually operated, drilling machines are used to produce a significant proportion of all holes drilled during wing manufacture. Drilling machine design and the manual drilling process has not changed significantly in decades. By employing miniature, low power, electronics and interfacing techniques, a monitoring system has been developed. This system enables improved process control of the manual drilling operation. Machine calibration management, measurement of drill performance, jig drilling error control and asset management are some of the benefits attainable. This project will hopefully encourage others to discover the potential for improving historically established processes, by employing modern technological developments.
Technical Paper

“SODART” Telescope Silicon Detector Cooling System (Thermal Test Results of the Scale-Down Model)

The onboard “SODART” telescope silicon detector cooling system of the “Spectrum-X-Gamma” observatory, which is designed for the space objects X-ray radiation study, is described. The scale-down model of the passive cooling system description and thermal vacuum test results of this model are given. In the real cooling system the minimal detector temperature at 300 mW heat release is expected about 107 K.
Technical Paper

“Phoenix”- A Polyester-Film Inflatable Man-Powered Aircraft

This paper describes some of the design solutions adopted in solving two major problems besetting man-powered aircraft in use: that of breakage and storage. It describes work leading up to the building and testing of “Phoenix”, a man-powered aircraft with a polyester-film inflatable wing. The paper deals mainly with aspects relating to the wing design and construction.
Technical Paper

“Melmoth”-An Experimental Private Aircraft

“Melmoth,” an amateur-designed and built light airplane, has a number of features unusual in general aviation aircraft, aiming to combine comfort, high cruising speed, aerobatic capability and transoceanic range in a single compact machine. Among these are high wing loading, large internal fuel capacity, variable aileron incidence, double-slotted Fowler flap, automatic fuel tank switching, internal cowl flaps, and an all-flying T-tail.
Technical Paper

“Converticar” - The Roadable Helicopter

The Boeing Company in Mesa, Arizona, has been conducting a concept design study of a roadable helicopter called the “Converticar” to assess its feasibility. This is a twin-engine vehicle with twin retractable coaxial counter-rotating rotors. The purpose of the study is to describe a vehicle that carries four passengers in the equivalent of a luxury car that also can fly like a helicopter, and can be priced like a luxury car. To come near this cost goal, the production rate must be on the order of 500,000 units a year. At that rate there is no chance of training a comparable number of pilots each year. So the machine must fly and navigate autonomously, with the pilot just dialing in where he/she wants to go. Technologically, the concept appears to be feasible. Modern design processes, new materials, and improved manufacturing process should allow the Converticar to be built at the prescribed rate when the proper infrastructure for manufacturing it is made available.
Technical Paper

“CDaero” - A Parametric Aerodynamic Drag Prediction Tool

The objective of the development of the aerodynamic drag predictive tool CDaero was for use as a module for the Automobile Design Support System (AutoDSS). CDaero is an empirically based drag coefficient predictive tool based initially on the MIRA (Motor Industry Research Association) algorithm. The development philosophy was to be able to predict the aerodynamic drag coefficient of an automobile with knowledge of the features of the surface geometry control curves. These are the curves that control the 3-dimensional geometry as seen in the profile, plan and front and rear views. CDaero has been developed in a computing environment using the equation solver TKSolver™. Fifty-one input feature values are first determined from the automobile geometry and then entered into the program. CDaero models the drag coefficient with thirteen different components covering the basic body, as well as additional components such as the wheels, mud flaps, etc.
Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
Technical Paper

some thoughts on optimum combinations of Wings and Vertical Thrust Generators in VTOL Aircraft

THIS PAPER reviews VTOL problems, indicating probable ways toward optimization of whole lifting and propelling system. Also discussed are the power and thrust requirements for optimum cruise and vertical take-offs and landings for propeller-driven and jet-propelled aircraft. Three speed ranges offer the most promise for VTOL aircraft, if thrust requirements for cruise and take-off are to match. The ranges are centered around Mach numbers of 0.65, 0.8, and 2.0+. There is a possibility of overcoming the high thrust needed for hovering by use of bypass augmentation, special hovering jets, or favorable ground effects, the author reports.
Technical Paper

preliminary design considerations for the Structure of a Trisonic Transport

STRUCTURAL MATERIALS for Mach 3 jet transports pose difficult problems for the design engineer. Reasons for this problem are the incomplete information available on the many possible metals and the diversity of critical properties that are added by supersonic requirements. The material properties discussed in this paper include tensile strength, resistance to crack propagation, ease of fabrication, weldability, and thermal expansion. Cost factors are also considered. The structural configuration of the wing and fuselage is an example of the complexity of the material selection problem. The wing may be rigidity-critical, and the fuselage strength-critical; each requires diferent material properties to solve the problem.*
Technical Paper

practical design suggestions for users of Brazed Honeycomb Sandwich

SIX BASIC suggestions are offered on how to design for practical, producible, economical structures of brazed honeycomb sandwich. The author illustrates the application of some of these design suggestions and explores the step-by-step theoretical reasoning a designer might use to arrive at a satisfactory design for a hypothetical large missile wing. The final design of a honeycomb sandwich component must take into account the process as well as structural and configuration requirements.
Technical Paper

eROSITA Camera Low Temperature Thermal Control

eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is a powerful X-ray telescope under development by the Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany. eROSITA is the core instrument on the Russian SRG1 mission which is planned for launch in 2011. It comprises seven nested Wolter-I grazing incidence telescopes, each equipped with its own CCD camera. The mirror modules have to be maintained at 20°C while the cameras are operated at -80°C. Both, mirrors and CCDs have to be kept within tight limits. The CCD cooling system consists of passive thermal control components only: two radiators, variable conductance heat pipes (VCHP) and two special thermal storage units. The orbit scenario imposes severe challenges on the thermal control system and also on the attitude control system.
Technical Paper

byteflight~A new protocol for safety-critical applications

The permanently increasing number of convenience and safety functions leads to higher complexity of in-car electronics and the rapidly growing amount of sensors, actuators and electronic control units places higher demands on high- speed data communication protocols. Safety-critical systems need deterministic protocols with fault-tolerant behavior. The need for on-board diagnosis calls for flexible use of bandwidth and an ever-increasing number of functions necessitates a flexible means of extending the system. None of the communication solutions available on the market until now (like CAN or TTP) have been able to fulfill all these demands. To solve these problems, BMW together with several semiconductor companies has developed a new protocol for safety-critical applications in automotive vehicles.
Technical Paper

Zone of Influence of Porous Suction Tubes in Condensing Heat Exchanger for Space Systems

A “next generation” condensing heat exchanger for space systems has to satisfy demanding operational requirements under variable thermal and moisture loads and reduced gravity conditions. Mathematical models described here are used to investigate transient behavior of wetting and de-wetting dynamics in the binary porous system of porous tubes and porous cold plate. The model is based on the Richard's equation simplified for the zero-gravity conditions. The half-saturation distance or the zone of influence of the porous annular suction tubes on the cold-plate porous material will be in the range of 1 to 10 cm for the time scales ranging from 100 to 10,000 seconds and moisture diffusivity in the range of D = 10-4 to 10-6 m2/s.
Technical Paper

Zero-Offset in Transducer Output

Zero-offset in transducer output during airbag noise testing is often observed, but mostly ignored due to the lack of understanding of its causes and implications. In the field of high-g acceleration measurement, this phenomenon is well documented, and is referred to as zeroshift. Zero-offset occurs when a component in the measurement chain is exposed to some unexpected inputs which the component has not been designed to handle. These unexpected inputs can be mechanical, electrical, or optical. How the transducer reacts to such inputs and the amount of zero-offset produced depends on the sensing mechanism, material used, and the design of the component itself. This paper explores the causes of zero-offset from a general perspective, covering the entire measurement chain. Although much of the information and discussions are based on data obtained from acceleration measurement systems, the findings are applicable to other transducer types, such as pressure and acoustic measurements.
Technical Paper

Z-type Schlieren Setup and its Application to High-Speed Imaging of Gasoline Sprays

Schlieren and shadowgraph imaging have been used for many years to identify refractive index gradients in various applications. For evaporating fuel sprays, these techniques can differentiate the boundary between spray regions and background ambient gases. Valuable information such as the penetration rate, spreading angle, spray structure, and spray pattern can be obtained using schlieren diagnostics. In this study, we present details of a z-type schlieren system setup and its application to port-fuel-injection gasoline sprays. The schlieren high-speed movies were used to obtain time histories of the spray penetration and spreading angle. Later, these global parameters were compared to specifications provided by the injector manufacturer. Also, diagnostic parameters such as the proportion of light cut-off at the focal point and the orientation of knife-edge (schlieren-stop) used to achieve the cut-off were examined.
Technical Paper

You-Are-Here Maps for International Space Station: Approach and Guidelines

Guidelines for designing you-are-here (YAH) maps aboard International Space Station (ISS) are proposed, based on results from previous 3D spatial navigation studies conducted by our research group and colleagues. This paper reviews terrestrial YAH maps, the common errors associated with them, and how to appropriately implement what is known from terrestrial to micro-gravity YAH maps. We conclude with a creative example of an ISS YAH map that utilizes given guidelines and information visualization techniques.