Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 11686
Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

“Web-ACSYNT”: Conceptual-Level Aircraft Systems Analysis on the Internet

1997-10-01
975509
A Web-based version of the aircraft design program ACSYNT has been created. “Web-ACSYNT” provides the user with a familiar user interface and is accessible from multiple platforms. Analyses are based upon a set of baseline aircraft models which can be modified through a carefully selected set of parameters related to weight, aerodynamics, propulsion, economics, and mission. The software is intended to become one of the models that comprise the Aviation System Analysis Capability (ASAC) currently being developed by NASA under the Advanced Subsonic Technology (AST) program.
Technical Paper

“Spacematic” Monitoring System

1998-09-15
982138
Pneumatic, manually operated, drilling machines are used to produce a significant proportion of all holes drilled during wing manufacture. Drilling machine design and the manual drilling process has not changed significantly in decades. By employing miniature, low power, electronics and interfacing techniques, a monitoring system has been developed. This system enables improved process control of the manual drilling operation. Machine calibration management, measurement of drill performance, jig drilling error control and asset management are some of the benefits attainable. This project will hopefully encourage others to discover the potential for improving historically established processes, by employing modern technological developments.
Technical Paper

“RoHS” Compliant Chrome - Free Conversion Coating for Aerospace Manufacturing

2006-09-12
2006-01-3130
This paper presents, chemistry, test data and processing procedures on a non toxic and environmentally friendly chrome-free conversion coating alternative with the same level of adhesion and secondary corrosion resistance as that found in chrome containing conversion coating systems. Test data from military and independent sources will be presented on secondary coating adhesion, electrical conductivity, filiform and neutral salt-spray corrosion resistance as compared to chromate based systems .on magnesium, aluminum and zinc and their respective alloys. The European “RoSH” initiative will not allow for the presence of any hexavalent chromium on imported electrical components as of July first of 2006. Trivalent chromium based systems generate hexavalent chromium due to the oxidation of the trivalent chromium and as such will not be allowed.
Technical Paper

“Rigidization-on-Command”™ (ROC) Resin Development for Lightweight Isogrid Booms with MLI

2003-07-07
2003-01-2342
The “Rigidization-on-Command”™ (ROC™) resin development has focused on the development of resin systems that use UV light cure for rigidization. Polymeric sensitizers have been incorporated into the resin formulations to promote cure using Pen-Ray lamps and UV light-emitting diodes (LED's). Formulations containing the polymeric sensitizers were examined by FTIR and DSC. Complete cure was observed after 15 min. exposure with the Pen-Ray lamps. Performance of the Pen-Ray lamps and UV LEDs was thoroughly characterized. Thermal models were developed to optimize the performance of the of the MLI insulation thermal oven used for orbital cure of the boom. Results show that -12°C is the lowest temperature required for cure of the ROC™ resin systems.
Technical Paper

“Phoenix”- A Polyester-Film Inflatable Man-Powered Aircraft

1984-02-01
840028
This paper describes some of the design solutions adopted in solving two major problems besetting man-powered aircraft in use: that of breakage and storage. It describes work leading up to the building and testing of “Phoenix”, a man-powered aircraft with a polyester-film inflatable wing. The paper deals mainly with aspects relating to the wing design and construction.
Technical Paper

“Melmoth”-An Experimental Private Aircraft

1975-02-01
750546
“Melmoth,” an amateur-designed and built light airplane, has a number of features unusual in general aviation aircraft, aiming to combine comfort, high cruising speed, aerobatic capability and transoceanic range in a single compact machine. Among these are high wing loading, large internal fuel capacity, variable aileron incidence, double-slotted Fowler flap, automatic fuel tank switching, internal cowl flaps, and an all-flying T-tail.
Technical Paper

“MONOGAL”: A New Anti-Corrosion Material for the Automotive Industry

1982-02-01
820335
MONOGAL is a coated steel developped to improve the corrosion resistance of exposed automotive body applications. Its process os based on the brittleness of the η zinc coating in a range of temperatures below the melting point of the zinc. MONOGAL is produced on a hot dip galvanizing line; at the exit of the pot the free zinc is brushed off the light side of the differentially coated sheet. Side 1 of MONOGAL presents a very thin and continuous layer of iron-zinc diffusion alloy with no free zinc. Side 2 is a standard G90 or G60 zinc coating. The iron-zinc alloy layer has excellent anti-galling properties which improve the formability of MONOGAL over two side hot dip galvanized steel with the same r value. MONOGAL also shows good weldability, paintability and corrosion resistance.
Technical Paper

“Investigation of High Achievable Pollutant Reduction on a “State of the Art” Indian 2 Wheelers - Technology Road Map to a Cleaner Air”

2015-11-17
2015-32-0802
Affordable, efficient and durable catalytic converters for the two and three wheeler industry in developing countries are required to reduce vehicle emissions and to participate in a cleaner and healthier environment. As a contribution Continental Emitec started a comprehensive testing program with a state of the art 180 cc Bharat Stage (BS) III Indian motorcycle. The program consists of testing the state of the art of Metallic substrates with structured foils with various catalyst sizes and positions (original or close coupled). The publication presents a short literature survey and the results of the investigation with a big catalyst volume mounted in underfloor position as well as in close coupled position, gained over the World-wide harmonized Motorcycle Test Cycle, considering the two possible vehicle classifications of this motorcycle, Sub-Class 2.1 and Sub-Class 2.2.
Technical Paper

“DELRIN” ACETAL RESIN —a new engineering material

1959-01-01
590033
“DELRIN” is a new thermoplastic which offers high strength, excellent thermal stability, good fatigue life, low creep, and excellent solvent resistance. This paper describes the physical and chemical properties of the material, and the range of possible uses. The material is easily fabricated into complex shapes by standard injection-molding techniques. Also, it can be easily joined to itself or to other materials. The authors think that the material offers advantages over metals in its good fric-tional properties, abrasion resistance, and corrosion resistance.
Technical Paper

“Converticar” - The Roadable Helicopter

1998-09-28
985513
The Boeing Company in Mesa, Arizona, has been conducting a concept design study of a roadable helicopter called the “Converticar” to assess its feasibility. This is a twin-engine vehicle with twin retractable coaxial counter-rotating rotors. The purpose of the study is to describe a vehicle that carries four passengers in the equivalent of a luxury car that also can fly like a helicopter, and can be priced like a luxury car. To come near this cost goal, the production rate must be on the order of 500,000 units a year. At that rate there is no chance of training a comparable number of pilots each year. So the machine must fly and navigate autonomously, with the pilot just dialing in where he/she wants to go. Technologically, the concept appears to be feasible. Modern design processes, new materials, and improved manufacturing process should allow the Converticar to be built at the prescribed rate when the proper infrastructure for manufacturing it is made available.
Technical Paper

“CDaero” - A Parametric Aerodynamic Drag Prediction Tool

1998-02-23
980398
The objective of the development of the aerodynamic drag predictive tool CDaero was for use as a module for the Automobile Design Support System (AutoDSS). CDaero is an empirically based drag coefficient predictive tool based initially on the MIRA (Motor Industry Research Association) algorithm. The development philosophy was to be able to predict the aerodynamic drag coefficient of an automobile with knowledge of the features of the surface geometry control curves. These are the curves that control the 3-dimensional geometry as seen in the profile, plan and front and rear views. CDaero has been developed in a computing environment using the equation solver TKSolver™. Fifty-one input feature values are first determined from the automobile geometry and then entered into the program. CDaero models the drag coefficient with thirteen different components covering the basic body, as well as additional components such as the wheels, mud flaps, etc.
Technical Paper

¼ Scale VehicleWake Pattern Analysis using Near-Wall PIV

2006-04-03
2006-01-1027
3-D Flow separations such as those that occur on the rear end of a vehicle have an impact on wall pressure distribution, hence on aerodynamic forces. The identification of these phenomena can be made through the analysis of skin friction patterns, which consist of the “footprints” of flow separations. These can be determined from qualitative and quantitative data obtained from near-wall PIV measurements. The wake flow of different configurations of a simplified 1/4 scale car model are analyzed. The influence of the slant angle and the Reynolds number on 3-D separated flow patterns and their induced pressure distribution is addressed, based on near-wall PIV, standard PIV and wall pressure measurements. This enables to understand how a topological change (the size or shape of a separation pattern) modifies the associated pressure distribution (therefore the drag coefficient). Finally, insights into instantaneous topology identification are presented.
Technical Paper

some thoughts on optimum combinations of Wings and Vertical Thrust Generators in VTOL Aircraft

1959-01-01
590040
THIS PAPER reviews VTOL problems, indicating probable ways toward optimization of whole lifting and propelling system. Also discussed are the power and thrust requirements for optimum cruise and vertical take-offs and landings for propeller-driven and jet-propelled aircraft. Three speed ranges offer the most promise for VTOL aircraft, if thrust requirements for cruise and take-off are to match. The ranges are centered around Mach numbers of 0.65, 0.8, and 2.0+. There is a possibility of overcoming the high thrust needed for hovering by use of bypass augmentation, special hovering jets, or favorable ground effects, the author reports.
Technical Paper

some development problems with Large Cryogenic Propellant Systems

1960-01-01
600022
HEAT TRANSFER causes loading and starting design problems in large missile systems powered by cryogenic propellants. This manifests itself during loading as effective density variation, violent surface conditions, boiloff, and ice formation — problems which may be solved by insulating the tank. During starting it causes overheating and caviation — effects which may be reduced by recirculators and subcooled charge injections. The study described in this paper centers around liquid oxygen and its variations in heat flux rate, which affect liquid density, surface condition, and replenishing requirements. The problem areas are made apparent by consideration of a hypothetical missile system.*
Technical Paper

properties of Asbestos Reinforced Laminates at elevated temperatures

1960-01-01
600063
IF ROCKET OR MISSILE designers were asked to choose one specific property of engineering materials they would like to have improved, the largest percentage would undoubtedly select strength at high temperature. In addition to retaining strength at high temperatures, missile materials must be resistant to erosion and ablation. Missile structures must also be satisfactory when subjected to aerodynamic and acceleration loads, high stresses of vibration, and thermal shock. The need for low-density, easily fabricated, heat-resistant materials has resulted in a continuing search for more effective combinations of known materials, as well as the development of new materials. This paper discusses some interesting results obtained in studies of composite materials that might be used for rocket or missile construction.
Technical Paper

preliminary design considerations for the Structure of a Trisonic Transport

1960-01-01
600045
STRUCTURAL MATERIALS for Mach 3 jet transports pose difficult problems for the design engineer. Reasons for this problem are the incomplete information available on the many possible metals and the diversity of critical properties that are added by supersonic requirements. The material properties discussed in this paper include tensile strength, resistance to crack propagation, ease of fabrication, weldability, and thermal expansion. Cost factors are also considered. The structural configuration of the wing and fuselage is an example of the complexity of the material selection problem. The wing may be rigidity-critical, and the fuselage strength-critical; each requires diferent material properties to solve the problem.*
X