Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Time Series Analysis of Diesel Exhaust Gas Emissions Under Transient Operation

1993-03-01
930976
Time series analysis of diesel exhaust gas emissions under transient operation was carried out using a uniquely developed gas sampling system to efficiently collect all exhaust gas throughout transient cycles. The effects of fuel properties and other engine operation parameters on the exhaust emissions under transient runs when fuel amounts abruptly increase were analyzed. The results showed that THC increased abruptly to 2 or 6 times the final steady-state concentration immediately after the start of acceleration and then decreased to the steady-state values after 70∼200 cycles. At acceleration, NOx increased abruptly to about 80 % of the final NOx concentration, and then increased gradually to reach the final values after 60∼500 cycles. The behaviors of THC and NOx during transient operation can be described by exponential functions of the elapsed cycle numbers and the final emission concentrations.
Technical Paper

The Influence of Fuel Properties on Diesel-Soot Suppression with Soluble Fuel Additives

1991-02-01
910737
Diesel soot suppression effects of catalytic fuel additives for a range of fuels with different properties were investigated with calcium naphthenate. A single cylinder DI diesel engine and a thermobalance were used to determine the soot reduction and its mechanism for seven kinds of fuels. Experimental results showed that the catalytic effect of the fuel additive was different for the different fuels, and could be described by a parameter considering cetane number and kinematic viscosity. The fuel additives reduced soot more effectively for fuels with higher cetane number and lower kinematic viscosity. This result was explained by soot oxidation characteristics for the different fuels. Oxidation of soot with the metallic additive proceeds in two stages: stage I, a very rapid oxidation stage; and stage II, a following slow or ordinary oxidation stage.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
X