Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Potentials of Variable Compressor Pre Swirl Devices in Consideration of Different Sealing Concepts

2013-04-08
2013-01-0934
For turbocharged engines high specific power and torque output as well as a fast transient response are mandatory. This conflict of aims can be solved by different charging systems, for example 2-stage charging or variable turbine geometry. At the Institute for Combustion Engines (VKA) at RWTH Aachen University another alternative, the variable compressor pre swirl, was investigated for solving this conflict of aims. Based on theoretical fundamentals the potentials of a variable compressor pre swirl for transient response, low end torque, specific power output and fuel consumption were presented. These theoretical potentials were explored on turbocharger -, engine - and vehicle test bench. An extended compressor map with partial higher compressor efficiency of up to 2% was detected. The outcome of this is an increase of up to 6% in low end torque, found on engine test bench. This effect could also be validated in 1D simulation.
Technical Paper

On the Measurement and Simulation of Flow-Acoustic Sound Propagation in Turbochargers

2019-06-05
2019-01-1488
Internal combustion engines are increasingly being equipped with turbochargers to increase performance and reduce fuel consumption and emissions. Being part of exhaust and intake systems, the turbocharger strongly influences the orifice noise emission. Although 1D-CFD simulations are commonly used for the development of intake and exhaust systems, validated acoustic turbocharger models are not yet state-of-the-art. Consequently, the aim of the paper is the investigation of the turbocharger’s influence on the orifice noise and the development of an accurate 1D-CFD model. The passive acoustic transmission loss was measured for a wide operating range of four turbochargers, including wastegate and VTG-system variations. Low frequency attenuation is dominated by impedance discontinuities, increasing considerably with mass flow and pressure ratio.
Technical Paper

Integrated Air Supply and Humidification Concepts for Fuel Cell Systems

2001-03-05
2001-01-0233
In this paper different air management system concepts including mechanical superchargers and turbochargers are analysed with regard to their suitability for fuel cell applications. Therefore a simulation model which takes the main mass, energy and heat flows in the fuel cell system including fuel evaporation, reformer, gas cleaning, humidification, burner and compressor/expander unit into account was setup. For a PEM system with methanol steam reformer the best system efficiencies at rated power can be achieved with a turbocharger in combination with a tailgas burner for operating pressures between 2.5 and 2.8 bar. For pure hydrogen systems the best system efficiency is obtained with an electric driven supercharger for a maximum pressure of 2 bar and an appropriate pressure strategy during part load operation in the complete operating range. The increase of system efficiency for pressurized stack operation is mainly attributed to advantages with regard to water management.
Technical Paper

Compressor Expander Units for Fuel Cell Systems

2000-03-06
2000-01-0380
In this paper different compressor/expander concepts including mechanical superchargers, turbochargers and two-stage charging concepts are analysed with regard to their suitability for fuel cell applications. Special attention is focused on system designs which use the energy of the tail gases for driving the compressor. The net efficiencies of different system concepts at full load were calculated with a simulation model, based on Matlab/Simulink‘ and show, that with a single stage turbocharger in combination with a tail gas burner good efficiencies and high power densities can be obtained at a pressure level of more than 2.5 bar.
Technical Paper

Balancing of Engine Oil Components in a DI Diesel Engine with Exhaust Gas Aftertreatment

2007-07-23
2007-01-1923
The influence of oil related emissions became more important in the past due to reduced engine-out emissions of combustion engines. Additionally the efficiency of exhaust gas after treatment components is influenced by oil derived components. A balancing of relevant engine oil components (Ca, Mg, Zn, P, S, Mo, B, Fe, Al, Cu) is presented in this paper. The oil components deposited in the combustion chamber, in the exhaust system as well as in the aftertreatment devices were determined and quantified. Therefore a completely cleaned DI Diesel engine with oxidation catalyst, Diesel particulate filter (DPF) and NOx adsorber catalyst (LNT) was operated in different operating conditions for 500 h in a development test cell. The operation included lean/rich cycling for NOx trap regeneration. After finishing the 500 h test procedure the engine was completely disassembled and all deposits were analyzed.
X