Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 39578
Technical Paper

"Quattro"-Drive for Every Day Driving

1984-01-01
845070
An essential feature of the Audi Quattro permanent four-wheel drive system is in the inter-axle differential located on the hollow output shaft in the gearbox: the drive is taken from this differential forward to the front differential through the inside of the hollow shaft, and rearward to a propellor shaft driving the rear differential. The major advantages in everyday driving include improved traction and a reduced tendency toward throttle induced changes of attitude. The greater traction allows not only better progress in difficult road conditions; it also gives better acceleration in difficult traffic situations, such as when joining a busy main road. The more easily predictable handling response to throttle changes means that Quattro vehicles have better tracking stability. Altogether, the active safety and "roadability" are considerably improved.
Technical Paper

<PP/SEBS> Compounds: Sealing an Easier Future for Automotive Designers and Specifiers

2002-07-09
2002-01-1997
There is a definite trend toward the increasing use of “Glass Encapsulation Technology” in the automotive industry. In this technology a glass object such as a window is placed within a mould and an elastomer is injected around the window giving a tight sealing system. A wide variety of materials are currently used as the sealing materials in either static or semi-static encapsulated glazing systems, including a wide range of “elastomers”. New thermoplastic elastomer compounds are being developed that are characterized by their consistent properties; including high melt-fluidity, very good surface appearance, sealing properties, and resistance to weathering. Compound performance is highly dependent on formulation variables as well as the chemistries of the base materials. KRATON® SEBS polymers1 are block copolymers of styrene and ethylene/butylene.
Technical Paper

(Test Developed For) Classifying Valve Bridge Cracking Solutions in Cylinder Heads

1995-02-01
950029
The testing system developed will decrease the time and the costs involved in evaluating cylinder head valve bridge designs. The test uses actual data generated from engine testing to recreate the valve bridge cracks that occur during dynamometer and vehicle testing. This paper focuses on the system description, the test development, design modifications, and the test results obtained. Testing shows that this method correctly separates valve bridge designs by test cycle life using statistical methods. It is a cost effective and timely alternative to dynamometer testing.
Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

1-D Dynamic Diesel Particulate Filter Model for Unsteady Pulsating Flow

2007-04-16
2007-01-1140
A fast time-scale 1-D dynamic diesel particulate filter model capable of resolving the pressure pulsations due to individual cylinder firing events is presented. The purpose of this model is to investigate changes in the firing frequency component of the pulsating exhaust flow at different particulate loadings. Experimental validation data and simulation results clearly show that the magnitude and phase of the firing frequency components are directly correlated to the mass of particulate stored in a diesel particulate filter. This dynamic pressure signal information may prove particularly useful for monitoring particulate load during vehicle operation.
Technical Paper

1-D Modeling and Experimental Evaluation of Secondary Air Injection System for a Small SI Engine

2013-10-15
2013-32-9091
In order to comply with the existing emission norms of BSIII in India or EURO III and beyond that also, it is not sufficient to use the catalytic converter technology alone over the wide range of engine operating maps. Different studies across the world have proved that the cost, drivability, operating range against AFR, heat dissipation rate characteristics of catalytic converter limit their use in startup and idling conditions. One common way to tackle this condition is to use the Secondary Air Injection (SAI) system. In this system, small amount of air is injected after the exhaust port to initiate the thermal oxidation of gases. The right amount of air injected at the right time and at right location will reduce the emission by 37-90%. In the following study, SI engine vehicle with single cylinder, 160 cc and having carburetor is used as a test vehicle to evaluate the performance of SAI. The SAI system is modeled in AVL BOOST software and validated against the experimental data.
Technical Paper

1-D Modeling and Room Temperature Experimental Measurements of the Exhaust System Backpressure: Limits and Advantages in the Prediction of Backpressure

2008-04-14
2008-01-0676
It is well known that backpressure is one of the important parameters to be minimised during the exhaust system development. Unfortunately, during the first phases of an engineering process of a new engine, engine prototypes are not available yet. Due to this the exhaust system backpressure is generally evaluated using simulation software, and/or measuring the backpressure by a flow rig test at room temperature. Goal of this paper is to compare exhaust backpressure results obtained respectively: i) at the room temperature flow rig; ii) at the engine dyno bench; iii) by simulation with one of the most common 1D fluidodynamics simulation tool (Gt-Power). A correlation of the three different techniques is presented.
Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
Journal Article

1-g Suit Port Concept Evaluator 2008 Test Results

2009-07-12
2009-01-2572
The Lunar Electric Rover (LER), which was formerly called the Small Pressurized Rover (SPR), is currently being carried as an integral part of the lunar surface architectures that are under consideration in the Constellation Program. One element of the LER is the suit port, which is the means by which crew members perform Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: a 1-g suit port concept evaluator for functional integrated testing with the LER 1-g concept vehicle and a functional and pressurizable Engineering Unit (EU). This paper focuses on the 1-g suit port concept evaluator test results from the Desert Research and Technology Studies (D-RATS) October 2008 testing at Black Point Lava Flow (BPLF), Arizona. The 1-g suit port concept evaluator was integrated with the 1-g LER cabin and chassis concepts.
Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

100,000 HP Gas Turbine Load Test Facility

1976-02-01
760314
The problem of testing large gas turbines at full load in the factory has been solved with the construction of a load test facility utilizing a gas turbine compressor as the load absorption device. Design philosophy and features are reviewed, and a summary, of operating experience to date is presented.
Technical Paper

100-kWe Lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion

1992-08-03
929446
An integration study was performed coupling an SP-100 reactor with either a Brayton or Stirling power conversion subsystem. A power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. Previous studies were used to select the power conversion optimum operating conditions (ratio of hot-side temperature to cold-side temperature). Results of the study indicated that either the Brayton or Stirling power conversion subsystems could be integrated with the SP-100 reactor for either a lunar or Mars surface power application.
Technical Paper

10PC20 Swash Plate Type Variable Displacement Compressor for Automotive Air Conditioners

1992-02-01
920260
Up to now, various compressor models for automotive air conditioners have been manufactured to answer the needs of car manufacturers for fuel economy and quietness. The 10PC20 compressor, developed for automotive air conditioners, is the world's first swash plate type compressor having a continuously variable displacement mechanism. The 10PC20 is aimed at realizing a large displacement compressor with a continuously variable displacement mechanism, which has not been achieved until today. To achieve this goal, the 10PC20 design is based on the swash plate type compressor, consisting of double-headed pistons, which is adaptable to a large displacement and has excellent rotating balance and durability. The 10PC20 changes its displacement continuously by changing the inclination of the swash plate (swash plate angle) continuously. (See photo. 1 and 2) The 10PC20 adopts two variable displacement principles.
Technical Paper

11 Rules of Design for Manufacturing when Producing Pre-Impregnated Carbon Fiber-Reinforced Plastic Components - an Application at SAAB Aerostructures

2016-09-27
2016-01-2124
Carbon fiber-reinforced plastic (CFRP) is one of the most commonly used materials in the aerospace industry today. CFRP in pre-impregnated form is an anisotropic material whose properties can be controlled to a high level by the designer. Sometimes, these properties make the material hard to predict with regards to how the geometry affects manufacturing aspects. This paper describes eleven design rules originating from different guidelines that describe geometrical design choices and deals with manufacturability problems that are connected to them, why they are connected and how they can be minimized or avoided. Examples of design choices dealt with in the rules include double curvature shapes, assembly of uncured CFRP components and access for non-destructive testing (NDT). To verify the technical content and ensure practicability, the rules were developed by, inter alia, studying literature and performing case studies at SAAB Aerostructures.
Technical Paper

120VAC Power Inverters

1983-02-01
830131
Inverters are solid state devices which change DC to 120VAC electricity. They are sufficiently rugged and reliable to make them practical for use on utility vehicles for operating thumpers, tools, lights and induction motor loads. The SCR type rather than the transistor type inverter is generally required for inductive and reactive loads. Static inverters operate from battery input. They provide power without running an engine, but are limited by battery capacity so work best in intermittent load applications. Dynamic inverters operate from alternator input and will handle continuous loads to 7200 watts with truck engine running.
Technical Paper

135 Days in Isolation and Confinement: The Hubes Simulation

1995-07-01
951512
The EUROMIR-95 flight was selected as model for the HUBES experiment: a similar duration (135 days), a similar crew (3 men), similar schedule organisation (8 hours work, 8 hours sleep, 8 hours off-duties), similar workload for the crew and the mission control (performance of scientific experiments), similar setup for communication and data processing, and similar layout of the MIR station, as the simulation was performed in the MIR simulator located at the Institute for BioMedical Problems (IBMP) in Moscow. The Scientific Programme of HUBES had been elaborated by integration of 31 experiments from more than 80 research proposals from Principal Investigators from Europe, USA and Russia, in domains of Physiology, Psychology, Operations and Technology.
Technical Paper

14 Design and Analysis of Two Wheeler Engine Gearbox through Simulation to Reduce the Development Time and Cost

2002-10-29
2002-32-1783
An efficient design of the gearbox is crucial for the expected performance of the vehicle both in terms of life and NVH. This involves design and analysis of gears, shafts, bearings, gear layout and speed ratios. Conventionally gears, shafts and bearings are designed and analysed independently. When the design of these parts change, their effect on related parts is estimated separately, leading to loss of time. Alternately, an integrated approach through simulation is adopted for the new two wheeler's gearbox by modeling on Romax designer software, consisting of shafts, bearings and gears. For the target load cycle, gear and bearing lives, shaft deflections and stresses are estimated. While the targets for stresses, deflections and lives are set logically and with experience, these are also compared with those of reference vehicle by creating and analysing reference gearbox model.
Technical Paper

14/42V - Electrical Power Supply Systems Consequences for Electrical Interconnections and Switches

2000-08-21
2000-01-3055
This paper provides an overview about the consequences of a 14/42 V - Electrical Power Supply System for the Electrical Interconnection and Switching Technology. It presents design guidelines and solutions for connector systems including advanced applications like fuse and relay boxes and gives an overview of those existing connectors already suited for 42 V and even higher voltages. The problem of arcing due to the increased voltage is discussed for the case that mating and unmating under load has to be taken into consideration. Arcing also has a tremendous impact on the design of 42 V proof relays. Therefore, some basic results be presented along with proposals how these problems can be overcome by appropriate designs. Another part of the paper looks at the electrical power supply system itself. Here interconnection techniques for new battery systems are discussed. Finally, the chances for new technologies are highlighted.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2018-04-15
CURRENT
J2691_201804
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
X