Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 43203
Technical Paper

• Oxidation Stability • Shear Stability • Rubber Swell Properties of Automatic Transmission Fluids

1960-01-01
600048
A NEW TEST is described for studying the oxidation stability of automatic transmission fluids (ATF). The test shows an excellent correlation with transmission oxidation tests and points out the importance of time as a variable in such studies. Carefully controlled automobile dynamometer tests have been used to study the shear stability of ATF's. Data are presented showing a comparison of driving conditions, transmissions, and V.I. improvers on shear stability. Results are related to the 50-hr Hydra-Matic durability test. The poor reproducibility of rubber swell measurements on commercial transmission seals is due largely to differences in the rubber compounds. A great improvement in the reproducibility may be made by taking into account the specific gravity of the rubber sample.*
Technical Paper

“ZYTEL” NYLON RESIN AND “TEFLON” TETRAFLUOROETHYLENE RESIN AS BEARING MATERIALS

1956-01-01
560190
Both “Zytel” nylon resin and “Teflon” tetrafluoro-ethylene resin are being used extensively as bearing materials. Most of these applications have been developed independently and no attempt has been made to collect performance data in order to put future design on a firm basis. Typical data on dry or partially lubricated bearings have been collected from a variety of sources. Work in our laboratories on lubricated bearings made of “Zytel” are reported for the first time. In addition, physical properties of these materials are described. With these properties and the bearing work done to date, it is believed that the selection of the material and the design of bearings can be done with greater accuracy.
Technical Paper

“Web-ACSYNT”: Conceptual-Level Aircraft Systems Analysis on the Internet

1997-10-01
975509
A Web-based version of the aircraft design program ACSYNT has been created. “Web-ACSYNT” provides the user with a familiar user interface and is accessible from multiple platforms. Analyses are based upon a set of baseline aircraft models which can be modified through a carefully selected set of parameters related to weight, aerodynamics, propulsion, economics, and mission. The software is intended to become one of the models that comprise the Aviation System Analysis Capability (ASAC) currently being developed by NASA under the Advanced Subsonic Technology (AST) program.
Journal Article

“Verify-on-Demand” - A Practical and Scalable Approach for Broadcast Authentication in Vehicle-to-Vehicle Communication

2011-04-12
2011-01-0584
In general for Vehicle-to-Vehicle (V2V) communication, message authentication is performed on every received wireless message by conducting verification for a valid signature, and only messages that have been successfully verified are processed further. In V2V safety communication, there are a large number of vehicles and each vehicle transmits safety messages frequently; therefore the number of received messages per second would be large. Thus authentication of each and every received message, for example based on the IEEE 1609.2 standard, is computationally very expensive and can only be carried out with expensive dedicated cryptographic hardware. An interesting observation is that most of these routine safety messages do not result in driver warnings or control actions since we expect that the safety system would be designed to provide warnings or control actions only when the threat of collision is high.
Technical Paper

“U” Bolt Torque Influence over Leaf Springs

2014-05-07
2014-36-0024
”U” bolts are fixing elements and they are used to clamp an elastic joint. From the past, they still looking as an old design and unfortunately, suspension engineers are not specialists in fasteners and elastic joints. That is why we will show important assumptions and concepts to design and specifications this clamp element “U” bolt and its influence over leaf-springs. Currently, “U” bolt is used to clamp an elastic or elastic-plastic joint of heavy duty suspension, formed by leaf-spring, axle, spring pad, “U” bolt plate. This kind of suspension is typically used to trucks, buses and trailers. We are wondering, which one important assumption that an engineer must be careful when designs a new suspension changing from old designs to an updated technology. We provide a theoretical analysis and a FEA analysis to compare torque efficacy x leaf-spring reactions and what are effects this relationship can cause in a suspension.
Technical Paper

“Use Of 75ST In Structural Applications”

1947-01-01
470140
The material known as 75ST is a new high strength aluminum alloy that can be used in certain aircraft structural applications to effect a saving in weight or an increase in strength or both over designs using other alloys. However, the structural engineer should be well acquainted with the advantages and limitations of this material before utilizing it in design.
Technical Paper

“Understanding Diesel Engine Lubrication at Low Temperature”

1990-10-01
902177
Oil pumpability in passenger car gasoline engines was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. Oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at -18°C (0°F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier had better performance than a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance.
Technical Paper

“Symbiose”: Technology Developments for Bioregeneration in Space

1994-06-01
941348
Dedicated technology has been developed to support long-term biological experiments on-board spacecraft. These developments include a microgravity compatible tubular photo bioreactor for the cultivation of micro algae at very high biomass concentrations and with very high gas exchange rates, a microgravity compatible gas / liquid phase separator which also works as a pneumatic low shear-stress pump, a microgravity compatible dehumidifier, and a maltose separating reverse osmosis unit. Integration of these technologies into a partially closed artificial ecosystem form the foundation of the SYMBIOSE concept (System for Microgravity Bioregenerative Support of Experiments).
Technical Paper

“Spacematic” Monitoring System

1998-09-15
982138
Pneumatic, manually operated, drilling machines are used to produce a significant proportion of all holes drilled during wing manufacture. Drilling machine design and the manual drilling process has not changed significantly in decades. By employing miniature, low power, electronics and interfacing techniques, a monitoring system has been developed. This system enables improved process control of the manual drilling operation. Machine calibration management, measurement of drill performance, jig drilling error control and asset management are some of the benefits attainable. This project will hopefully encourage others to discover the potential for improving historically established processes, by employing modern technological developments.
Technical Paper

“Smart Panel” Electronic Circuit Breaker Control Technology

2008-11-11
2008-01-2880
This paper will discuss using Astronics “Smart Panel” illuminated control panels to control an electronic power distribution system. A discussion of wiring simplification, automatic control possibilities and real time load monitoring is presented. The challenges of retrofitting the system into older aircraft will be covered as well. The paper also explains Electronic Circuit Breaker technology, arc fault protection, panel lighting technologies, control bus options, displays, and human input technology (buttons and knobs).
Technical Paper

“Seizure-Delay” Method for Determining the Seizure Protection of EP Lubricants

1939-01-01
390146
IT does not yet seem to be recognized fully that it is the local temperature at the surface of contact and not the local specific pressure that chiefly determines the occurrence of seizure under extreme-pressure-lubrication conditions. This local temperature is the result of the temperature level of the parts lubricated, considered as a whole (“bulk” temperature) and of a superimposed instantaneous temperature rise (temperature “flash”) which is localized in the surface of contact. It appears typical for extreme-pressure-lubrication conditions, as met in gear practice, that the temperature flash is much higher than the bulk temperature. With existing conventional test methods for the determination of the protection against seizure afforded by EP lubricants, a considerable rise of the bulk temperature mostly occurs; as it cannot be controlled sufficiently; thus, leaving an unknown margin for the temperature flash, it renders impossible a reliable determination.
Technical Paper

“Second-Generation” SAE 5W-30 Passenger Car Engine Oils

1986-10-01
861515
High performance lubricant additive systems have been developed to formulate SAE 5W-30 passenger car engine oils which meet current and anticipated requirements of the North American original equipment manufacturers. The trend in North America is to recommend SAE 5W-30 oils that not only meet the API SF requirements for gasoline engines (“first-generation” oils), but also meet the stringent API CC requirement for light duty diesel engines (“second-generation” oils). Furthermore, the engine builders have issued “world specifications” for motor oils which incorporate additional “second-generation” SAE 5W-30 characteristics, such as enhanced API SF limits, improved fuel efficiency, an increased margin of bearing protection, and lower finished-oil phosphorus levels. The additive systems described herein exceed API SF and CC requirements as well as “second-generation” performance hurdles.
Technical Paper

“Rubber Coupling” at a 4×4 Transmition System

2003-11-18
2003-01-3684
There are many different vibration sources in a car. Engine, gears, road roughness, impacts against the wheels cause vibration and sound that can decrease the parts and the car durability as well as affect drivability, safety and passengers and community comfort. In 4×4 cars, some extra vibration sources are the parts responsible for transmitting the torque and power to the rear wheels. Each of them has their own vibration modes, excited mostly by its imbalance or by the second order engine vibration. The engine vibration is a very well known phenomena and the rear driveshaft is designed not to have any vibration mode in the range of frequencies that the engine works or its second order. The imbalance of a driveshaft is also a design requirement. That means, the acceptable imbalance of the driveshaft is limited to a maximum value.
Technical Paper

“Remanufacturing”: The Sustainable Service Solution for Past Model Automotive Electronics Support

2008-10-20
2008-21-0029
In this paper, remanufacturing will be explored as a feasible option to maintaining the serviceability of electronic modules fitted to vehicles entering their service life from year four (after warranty) and beyond. Understanding the makeup of each module (content, design, and complexity) determines the feasibility of remanufacturing along with its cost effectiveness. Problems exist storing components for many years and engaging in periodic manufacturing is not cost competitive for high content modules. Thus, if reverse capability is not an option, then remanufacturing is a viable solution that, for certain modules, is a cost effective and an environmentally responsible (sustainable) solution to the service parts dilemma.
X