Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 15045
Technical Paper

“Wetting” the Appetite of Spark Ignition Engines for Lean Combustion

1978-02-01
780234
Single-cylinder spark ignition engine experiments conducted at constant speed, fixed airflow, and using isooctane as the fuel, demonstrated the effects of fuel-air mixture preparation on lean operation. Mixture preparation was changed by varying the time of fuel injection in the induction manifold, near the intake valve port. For comparison, a prevaporized fuel-air mixture was also investigated. Emphasis was placed on determining the effects of mixture preparation on combustion characteristics. Based on the results from this study, the often favored prevaporized mixture of fuel and air may not be the best diet for lean engine operation.
Technical Paper

“Virtual Engine/Powertrain/Vehicle” Simulation Tool Solves Complex Interacting System Issues

2003-03-03
2003-01-0372
An integrated simulation tool has been developed, which is applicable to a wide range of design issues. A key feature introduced for the first time by this new tool is that it is truly a single code, with identical handling of engine, powertrain, vehicle, hydraulics, electrical, thermal and control elements. Further, it contains multiple levels of engine models, so that the user can select the appropriate level for the time scale of the problem (e.g. real-time operation). One possible example of such a combined simulation is the present study of engine block vibration in the mounts. The simulation involved a fully coupled model of performance, thermodynamics and combustion, with the dynamics of the cranktrain, engine block and the driveline. It demonstrated the effect of combustion irregularity on engine shaking in the mounts.
Technical Paper

“Trapless” Trap – A Catalytic Combustion System of Diesel Particulates Using Ceramic Foam

1983-02-01
830082
“Trapless” Trap, which makes possible the effective collecting of particulates in diesel exhaust gas and their simultaneous combustion has been developed by use of a ceramic foam in combination with catalysts containing copper salt. From a TEM photograph, it was observed that the particulate was rapidly oxidized by mobile copper ion, showing worm-eaten like spots. Screening of various base metal salts by TGA presented CUCl2-KCl-NH4VO3 and CuCl2-KCl-(NH4)6Mo7O24 as very active catalysts for diesel particulate oxidation. They had thermal stability up to 900°C when they were supported on titania. The results obtained by measuring the back pressure using 1.8L diesel engine suggest the above trap to be a self-cleaning trapless trap.
Technical Paper

“Smart sensing” of Oil Degradation and Oil Level Measurements in Gasoline Engines

2000-03-06
2000-01-1366
Proper lubrication of moving parts is a critical factor in internal combustion engine performance and longevity. Determination of ideal lubricant change intervals is a prerequisite to ensuring maximum engine efficiency and useful life. When oil change intervals are pushed too far, increased engine wear and even engine damage can result. On the other hand, premature oil changes are inconvenient, add to vehicle maintenance cost, and result in wasted natural resources. In order to determine the appropriate oil change interval, we have developed an oil condition sensor that measures the electrical properties of engine oil, and correlates these electrical properties to the physical and chemical properties of oil. This paper provides a brief background discussion of the oil degradation process, followed by a description of the sensor operational principles and the correlation of the sensor output with physical and chemical engine oil properties.
Technical Paper

“Real-Time Estimation of Soot for a Wall Flow DPF Regeneration Management and an Efficient DOE for Model Calibration.”

2021-09-22
2021-26-0333
Estimation of soot deposited on a wall flow type DPF, is a vital information to ensure safe and efficient DPF management. Accuracy in determining mass of soot present inside the DPF ensures a correct regeneration management strategy in-terms of fuel efficiency and DPF safety considering soot overloading and too frequent regenerations. It also ensures an efficient detection of anomalies in the PM filtration mandated by the BSVI/EURO VI legislation as a part of On-board diagnostics. Classical approach of determining soot present inside DPF involves monitoring increase in pressure drop. Real time usage of such a model is limited by the inaccuracy of measuring pressure drop at low exhaust flows. Hence, contemporary engine controllers use pressure drop based models as a failsafe and estimate DPF soot loading by modelling soot release rate due to engine combustion and the rate at which it is oxidized.
Technical Paper

“Prediction of In-Cylinder Pressure, Temperature, and Loads Related to the Crank Slider Mechanism of I.C. Engines: A Computational Model”

2003-03-03
2003-01-0728
This paper describes the initial works related to the study of Internal Combustion Engines, as an object of mechanical design, at the Universidad Tecnológica de Pereira. It is reported a concise, complete methodology for simple model of internal combustion engine. The emphasis of the paper is placed on the use of the in-cylinder parameters (pressure and temperature) and inertial loads in the crank-slider mechanism to derive the loads that act on all the components of the crank-slider mechanism as well as the theoretical output torque for a given geometrical structure and inertial properties. These loads can then be used to estimate the preliminary dimensions of engine components in the initial stage of engine development. To obtain the pressure and temperature inside the cylinder, under different operation parameters, such as air fuel ratio and spark angle advance, a Zero dimensional model is applied. The heat transfer from the cylinder and friction are not taken into account.
Technical Paper

“Performance Emission Parameters Behavior of a DI Diesel Engine Using Al2O3 and TiO2 Nano Additive Biodiesel Blends”

2023-11-10
2023-28-0127
This study mainly focuses on the blending of Alumina and Titanium oxide nanoparticles (NP’s) in Spirulina biodiesel blends (SB20) to estimate the influence of engine (combustion, performance and emission) parameters of a diesel engine. The characterization of Al2O3 and TiO2 NP’s like SEM were reported. By using various fuel samples such as Diesel, SB20, SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO, the engine tests on the diesel engine were conducted at various load conditions. The BTE for SB20+80 ppm AO were enhanced by 12.35% and 8.4 % compared to the SB20 fuel and SB20+40 ppm AO fuel samples. The combustion parameters were improved for the NP’s as additives (Al2O3 and TiO2) fuels than the SB20 fuel sample because NP’s contain oxygen content. The parameters of engine exhaust emissions such as HC, CO and smoke are drastically diminished for the SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO fuels compared to the SB20 fuel.
Technical Paper

“OptiVent” - A New Approach for Controlling Mass Air Flow and Combustion in Direct Injection SI-Engines

2013-04-08
2013-01-0592
Combustion concepts for future SI engines try to meet CO2-emission commitments and legislation all over the world. Where the Diesel engine has an advantage by principle, the efficiency of the SI engine has to be improved significantly, while of course the exhaust emissions must not become worse. An approach is to reduce the gas exchange losses using fully variable valve trains on the intake side of the combustion engine. OptiVent is a patented new way of controlling the mass air flow in the cylinder of a combustion engine using opening valves during the compression phase of a four stroke engine. This technology regards a wider range of variability on the valvetrain components of the engine especially for opening the valves more than one time during a cycle. On the other hand it is necessary to combine this technology with direct injection to avoid fuel losses in the exhaust system and raising the exhaust hydrocarbon emission of the engine.
Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

“Nucleate Boiling Investigations and the Effects of Surface Roughness”

1999-03-01
1999-01-0577
The findings presented in this paper are part of a long term project aimed at raising the science of heat transfer in internal combustion engine cooling galleries. Initial work has been undertaken by the authors and an experimental facility is able to simulate different sizes of coolant passages. External heat is applied and data for the forced convective, nucleate boiling and transition or critical heat flux (CHF) regimes has been obtained. The results highlighted in this paper attempt to quantify the effects of cooling passage surface roughness on the nucleate boiling regime. Tests have been conducted using aluminium test pieces with surface finishes described as smooth, intermediate and as-cast. It has been found that the as-cast surface increases the heat flux density in the nucleate boiling region over that of the smooth and intermediate surfaces.
Technical Paper

“Influence of Engine Variables on Exhaust Oxides of Nitrogen Concentrations from a Multi-Cylinder Engine”

1967-02-01
670482
The influence of engine variables on the concentration of oxides of nitrogen present in the exhaust of a multicylinder engine was studied. The concentrations of nitric oxide (NO) were measured with either a mass spectrometer or a non-dispersive infrared analyzer. The NO concentration was low for rich operation (deficient in oxygen) and increased with air-fuel ratio to a peak value at ratios slightly leaner than stoichiometric proportions. A further increase in air-fuel ratio resulted in reduced NO concentrations. Advanced spark timing, decreased manifold vacuum, increased coolant temperature and combustion chamber deposit buildup were also found to increase exhaust NO concentration. These results support either directly or indirectly the hypothesis that exhaust NO concentration is primarily a result of the peak combustion gas temperature and the available oxygen.
Technical Paper

“Catalytic Engine” NOx Reduction of Diesel Engines with New Concept Onboard Ammonia Synthesis System

1992-02-01
920469
Ammonia is one of the most useful compounds that react with NOx selectively on a catalyst, such as V2O5-TiO2, under oxygen containing exhaust gas. However ammonia cannot be stored because of its toxicity for the small power generator in populated areas or for the diesel vehicles. A new concept for NOx reduction in diesel engine using ammonia is introduced. This system is constructed from the hydrogen generator by fuel reformer, the ammonia synthesizer, SCR catalyst for NOx reduction and the gas injection system of reformed gas into the cylinder. Experimental results show that, the SCR catalyst provides a very high rate of NOx reduction, reformed gas injection into cylinder is very effective for particulate reduction. WHEN CONSIDERING INTERNAL COMBUSTION ENGINES of the 1990's the question of how to harmonize the engine with the natural environments is one of the greatest problems. The internal combustion engine changes a substance into energy via its explosive combustion.
Technical Paper

‘FM’ - A High Efficiency Combustion System for the Future Light Duty Engine?

1982-02-01
820760
Consideration of the approaching ‘energy crisis’ reveals two requirements for future light duty automotive engines. 1) maximum economy and 2) the ability (perhaps with detail design re-optimisation) to accept a range of fuels of petroleum or other extract, of differing ignition characteristics. One combustion system which meets these requirements is the MAN ‘FM’, the potential of which has already been demonstrated in truck-size engines but on which little information has been published in light-duty engine bore sizes. The paper describes both design and experimental work carried out to evaluate the application of the FM combustion system to a light duty passenger car engine. Consideration is given to the critical design parameters associated with the application of the FM system to a multi-cylinder gasoline based engine and how the criteria can be met. Details of the design and construction of a single cylinder derivative of the multi-cylinder engine are given.
Technical Paper

λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

2018-04-03
2018-01-0891
Dynamic skip fire (DSF) has shown significant fuel economy improvement potential via reduction of pumping losses that generally affect throttled spark-ignition (SI) engines. In DSF operation, individual cylinders are fired on-demand near peak efficiency to satisfy driver torque demand. For vehicles with a downsized-boosted 4-cylinder engine, DSF can reduce fuel consumption by 8% in the WLTC (Class 3) drive cycle. The relatively low cost of cylinder deactivation hardware further improves the production value of DSF. Lean burn strategies in gasoline engines have also demonstrated significant fuel efficiency gains resulting from reduced pumping losses and improved thermodynamic characteristics, such as higher specific heat ratio and lower heat losses. Fuel-air mixture stratification is generally required to achieve stable combustion at low loads.
Technical Paper

Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property

2019-04-02
2019-01-0961
Φ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. A fuel is φ-sensitive if its autoignition reactivity varies with the fuel/air equivalence ratio (φ). Thus, multiple-injection strategies can be used to create a φ-distribution that leads to several benefits. First, the φ-distribution causes a sequential autoignition that reduces the maximum heat release rate. This allows higher loads without knock and/or advanced combustion timing for higher efficiencies. Second, combustion phasing can be controlled by adjusting the fuel-injection strategy. Finally, experiments show that intermediate-temperature heat release (ITHR) increases with φ-sensitivity, increasing the allowable combustion retard and improving stability. A detailed mechanism was applied using CHEMKIN to understand the chemistry responsible for φ-sensitivity.
Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

2011-08-30
2011-01-1890
The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
Technical Paper

mDSF: Improved Fuel Efficiency, Drivability and Vibrations via Dynamic Skip Fire and Miller Cycle Synergies

2019-04-02
2019-01-0227
mDSF is a novel cylinder deactivation technology developed at Tula Technology, which combines the torque control of Dynamic Skip Fire (DSF) with Miller cycle engines to optimize fuel efficiency at minimal cost. mDSF employs a valvetrain with variable valve lift plus deactivation and novel control algorithms founded on Tula’s proven DSF technology. This allows cylinders to dynamically alternate among 3 potential states: high-charge fire, low-charge fire, and skip (deactivation). The low-charge fire state is achieved through an aggressive Miller cycle with Early Intake Valve Closing (EIVC). The three operating states in mDSF can be used to simultaneously optimize engine efficiency and driveline vibrations. Acceleration performance is retained using the all-cylinder, high-charge firing mode.
Technical Paper

if you squeeze them, must them SCREAM?

1959-01-01
590023
TODAY'S high-compression engines present new problems of engine noise to automotive engineers. This paper deals with some of the factors which contribute to rumble, knock, and surface ignition. The work was primarily concerned with the influence of fuel composition on the equilibrium octane number requirement and surface ignition tendency of high-compression engines. Both the effect of the combustion-chamber deposits formed by the fuel and the effect of the combustion characteristics of the fuel itself were considered. The results indicate that a reduction in gasoline tail-end volatility or the use of an effective ignition control additive can reduce knock, surface ignition, and rumble; while use of gasolines containing high concentrations of aromatic hydrocarbons can increase these combustion difficulties.
Technical Paper

development of two new Allis-Chalmers Diesel Engines

1960-01-01
600023
THE NEW DIRECT-INJECTION diesel engines — the naturally aspirated 16000 and the turbocharged 21000 — were developed to power specific crawler and wheel vehicles built by Allis-Chalmers. Thus the original design and performance specifications were defined by the space available in these machines, and by the power and torque characteristics required by them. Also, the engines had to be suitable not only for commercial applications such as generator sets, shovels, and compressors, but also for oil field and marine service. Torque and speed requirements indicated that a 5¼-in. bore and 6½-in. stroke would give the desired performance. To meet the low heat rejection and good starting requirements, an open-chamber combustion system had to be used. The three-valve arrangement — two intake and one exhaust — was chosen because it offered low pumping losses and reasonable cost. This paper describes the design considerations and development work which produced the new diesel engines.*
X