Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 29216
Technical Paper

“Virtual Engine/Powertrain/Vehicle” Simulation Tool Solves Complex Interacting System Issues

2003-03-03
2003-01-0372
An integrated simulation tool has been developed, which is applicable to a wide range of design issues. A key feature introduced for the first time by this new tool is that it is truly a single code, with identical handling of engine, powertrain, vehicle, hydraulics, electrical, thermal and control elements. Further, it contains multiple levels of engine models, so that the user can select the appropriate level for the time scale of the problem (e.g. real-time operation). One possible example of such a combined simulation is the present study of engine block vibration in the mounts. The simulation involved a fully coupled model of performance, thermodynamics and combustion, with the dynamics of the cranktrain, engine block and the driveline. It demonstrated the effect of combustion irregularity on engine shaking in the mounts.
Technical Paper

“Transet” Transmission Controller Development System

1996-08-01
961765
A program was developed that provides a user friendly interface for developing and testing shift tables in a powershift transmission. This program is Windows based and runs on an IBM compatible P.C. When coupled with a suitable controller, transmission designers have a useful tool for the development of transmission shift timing. The system is designed to be used in an engine test cell or for actual vehicle tests. This allows the vehicle operator to call up and edit shifts on a P.C. screen and then drive the vehicle using the new shifts. This allows the operator to evaluate results of real time shifts immediately.
Technical Paper

“The Influence of Idle, Drive Cycle and Accessories on the Fuel Economy of Urban Hybrid Electric Buses - Chassis Dynamometer Tests”

2003-11-10
2003-01-3438
Fuel economy can be part of a business case for a fleet making the decision to buy new HD hybrid drivetrain technologies. Chassis dynamometer tests using SAE Recommended Practice J2711 on a bus equipped with an Allison EP SYSTEM ™ hybrid system and operated on standard bus driving cycles have produced impressive gains of over 60%. Preliminary urban bus field tests, on the other hand, have shown lower fuel economy gains. The difference can be attributed, in part, to the use of accessories - most importantly air conditioning - which are parasitic loads on the vehicle. In this paper the characteristics of driving cycles are studied to determine those factors which have the strongest influence on fuel economy for hybrids. The data show that the number of stopping events in a route or cycle is a strong influence as is the average vehicle speed. Energy analysis will show the relationship of fuel economy benefit and battery energy within a driving cycle.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

“Seizure-Delay” Method for Determining the Seizure Protection of EP Lubricants

1939-01-01
390146
IT does not yet seem to be recognized fully that it is the local temperature at the surface of contact and not the local specific pressure that chiefly determines the occurrence of seizure under extreme-pressure-lubrication conditions. This local temperature is the result of the temperature level of the parts lubricated, considered as a whole (“bulk” temperature) and of a superimposed instantaneous temperature rise (temperature “flash”) which is localized in the surface of contact. It appears typical for extreme-pressure-lubrication conditions, as met in gear practice, that the temperature flash is much higher than the bulk temperature. With existing conventional test methods for the determination of the protection against seizure afforded by EP lubricants, a considerable rise of the bulk temperature mostly occurs; as it cannot be controlled sufficiently; thus, leaving an unknown margin for the temperature flash, it renders impossible a reliable determination.
Technical Paper

“SODART” Telescope Silicon Detector Cooling System (Thermal Test Results of the Scale-Down Model)

1992-07-01
921365
The onboard “SODART” telescope silicon detector cooling system of the “Spectrum-X-Gamma” observatory, which is designed for the space objects X-ray radiation study, is described. The scale-down model of the passive cooling system description and thermal vacuum test results of this model are given. In the real cooling system the minimal detector temperature at 300 mW heat release is expected about 107 K.
Technical Paper

“Quiet” Aspects of the Pratt & Whitney Aircraft JT15D Turbofan

1973-02-01
730289
This paper describes the engine design details of the Pratt & Whitney JT15D-1 engine as related to noise generation. Design principles and factors contributing to the very low-noise levels on the Cessna Citation aircraft are illustrated. Noise testing experiences and data from static tests on the United Aircraft of Canada Ltd. (UACL) flight test aircraft and from both static and flight tests on the Citation aircraft are discussed. Lessons learned from these tests and some future probabilities are outlined.
Technical Paper

“Prediction of In-Cylinder Pressure, Temperature, and Loads Related to the Crank Slider Mechanism of I.C. Engines: A Computational Model”

2003-03-03
2003-01-0728
This paper describes the initial works related to the study of Internal Combustion Engines, as an object of mechanical design, at the Universidad Tecnológica de Pereira. It is reported a concise, complete methodology for simple model of internal combustion engine. The emphasis of the paper is placed on the use of the in-cylinder parameters (pressure and temperature) and inertial loads in the crank-slider mechanism to derive the loads that act on all the components of the crank-slider mechanism as well as the theoretical output torque for a given geometrical structure and inertial properties. These loads can then be used to estimate the preliminary dimensions of engine components in the initial stage of engine development. To obtain the pressure and temperature inside the cylinder, under different operation parameters, such as air fuel ratio and spark angle advance, a Zero dimensional model is applied. The heat transfer from the cylinder and friction are not taken into account.
Technical Paper

“Pedestrian in the Loop”: An Approach Using Augmented Reality

2018-04-03
2018-01-1053
A large number of testing procedures have been developed to ensure vehicle safety in common and extreme driving situations. However, these conventional testing procedures are insufficient for testing autonomous vehicles. They have to handle unexpected scenarios with the same or less risk a human driver would take. Currently, safety related systems are not adequately tested, e.g. in collision avoidance scenarios with pedestrians. Examples are the change of pedestrian behaviour caused by interaction, environmental influences and personal aspects, which cannot be tested in real environments. It is proposed to use augmented reality techniques. This method can be seen as a new (Augmented) Pedestrian in the Loop testing procedure.
Technical Paper

“Influence of Engine Variables on Exhaust Oxides of Nitrogen Concentrations from a Multi-Cylinder Engine”

1967-02-01
670482
The influence of engine variables on the concentration of oxides of nitrogen present in the exhaust of a multicylinder engine was studied. The concentrations of nitric oxide (NO) were measured with either a mass spectrometer or a non-dispersive infrared analyzer. The NO concentration was low for rich operation (deficient in oxygen) and increased with air-fuel ratio to a peak value at ratios slightly leaner than stoichiometric proportions. A further increase in air-fuel ratio resulted in reduced NO concentrations. Advanced spark timing, decreased manifold vacuum, increased coolant temperature and combustion chamber deposit buildup were also found to increase exhaust NO concentration. These results support either directly or indirectly the hypothesis that exhaust NO concentration is primarily a result of the peak combustion gas temperature and the available oxygen.
Technical Paper

“Hot Tube Test”-Analysis of Lubricant Effect on Diesel Engine Scuffing

1984-02-01
840262
To prevent engine scuffing in the field a new laboratory test called the Hot Tube Test has been established in order to evaluate the high temperature stability of diesel engine oils. In a strip mining application field test using 47 bulldozers powered by the same engine type, half of the engines suffered from piston scuffing failures when operated on a variety of commercially available API CD quality SAE 30 Grade engine oils. All the field test oils have been investigated using the Hot Tube Test, and an analysis of the results indicates that it would be possible to accurately predict scuffing failures by this test method. Furthermore, the reliability of this analysis has been verified by bench engine testing on reference oils. The reasons why the Hot Tube Test predicts the anti-scuffing performance of engine oils are discussed.
Technical Paper

“Geometric Dimensioning and Tolerancing”

1968-02-01
680488
Geometric dimensioning and tolerancing is both a “language” and a “technique.” Its objective is to facilitate design, production, and inspection and, simultaneously, provide the most economic results. This paper describes the implementation and practice to accomplish these through illustrating methods to state design requirements specifically and clearly and to provide for maximum producibility, uniformity of interpretation, etc. The need to reflect a common objective for design, production, and inspection via the stated drawing requirement is emphasized. Application and interpretation of geometric characteristics (emphasizing symbology), fundamentals, rules, etc. are presented. Basis for the content of this paper is USASI Y14.5-1966 “Dimensioning and Tolerancing for Engineering Drawings.”
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

“Evaluation of the Drift of vehicle Inspection/Maintenance Emission Analyzers in use- A California Case Study”

1989-05-01
891119
Quality assurance (QA) in motor vehicle emissions inspection/maintenance (I/M) programs is a continuing concern, especially in decentralized programs with hundreds or even thousands of licensed stations. The emissions analyzers used in such stations are an important focus of governmental QA efforts because of the central role of analyzers in determining which vehicles need to be repaired. Therefore, the In-use performance of I/M emission analyzers has a large impact on the quality of 1/M programs as a whole. This paper reports on the results of an investigation in California designed to determine in-use performance of emission analyzers in the field. The investigation was designed to evaluate both drift rates and the ability of analyzer systems with automatic gas calibration capability to correct analyzer responses outside of accepted tolerances.
Technical Paper

“Concept to Concrete” Development of a Truck Type Street Sweeper

1979-02-01
790879
A new truck type street sweeper has been developed which incorporates some of the sweeping advantages of a three wheeled sweeper (tricycle steer) and the transport advantages of a legal highway truck. It offers major productivity improvements through better operator environment and decrease of nonsweeping time in the operational cycle. It is possible for a small “short line” special purpose vehicle manufacturer to develop, test, and produce such a vehicle and meet Federal regulatory requirements with limited “In house” design and testing facilities. Here this was accomplished through judicious augmentation by outside specialized design and testing organizations.
Technical Paper

“Catalytic Engine” NOx Reduction of Diesel Engines with New Concept Onboard Ammonia Synthesis System

1992-02-01
920469
Ammonia is one of the most useful compounds that react with NOx selectively on a catalyst, such as V2O5-TiO2, under oxygen containing exhaust gas. However ammonia cannot be stored because of its toxicity for the small power generator in populated areas or for the diesel vehicles. A new concept for NOx reduction in diesel engine using ammonia is introduced. This system is constructed from the hydrogen generator by fuel reformer, the ammonia synthesizer, SCR catalyst for NOx reduction and the gas injection system of reformed gas into the cylinder. Experimental results show that, the SCR catalyst provides a very high rate of NOx reduction, reformed gas injection into cylinder is very effective for particulate reduction. WHEN CONSIDERING INTERNAL COMBUSTION ENGINES of the 1990's the question of how to harmonize the engine with the natural environments is one of the greatest problems. The internal combustion engine changes a substance into energy via its explosive combustion.
X