Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 33346
Technical Paper

“itron” Vacuum Fluorescent Display Dot Matrix Graphic Display with Characteristics

1980-02-01
800359
In recent years, with the development of information system products, the types of display devices utilized are becoming more sophisticated and complicated. Displays of earlier stages are now being replaced by 5×7 dot type displays which allow the display of functional symbols as well as alphanumerics. The dot type display is being developed into a dot matrix type as a more sophisticated product, in the latest stage. A great feature of the dot matrix type display is that it allows display not only of numerals, the alphabet, and other functional symbols but also of graphic features.
Technical Paper

“Virtual Engine/Powertrain/Vehicle” Simulation Tool Solves Complex Interacting System Issues

2003-03-03
2003-01-0372
An integrated simulation tool has been developed, which is applicable to a wide range of design issues. A key feature introduced for the first time by this new tool is that it is truly a single code, with identical handling of engine, powertrain, vehicle, hydraulics, electrical, thermal and control elements. Further, it contains multiple levels of engine models, so that the user can select the appropriate level for the time scale of the problem (e.g. real-time operation). One possible example of such a combined simulation is the present study of engine block vibration in the mounts. The simulation involved a fully coupled model of performance, thermodynamics and combustion, with the dynamics of the cranktrain, engine block and the driveline. It demonstrated the effect of combustion irregularity on engine shaking in the mounts.
Journal Article

“Verify-on-Demand” - A Practical and Scalable Approach for Broadcast Authentication in Vehicle-to-Vehicle Communication

2011-04-12
2011-01-0584
In general for Vehicle-to-Vehicle (V2V) communication, message authentication is performed on every received wireless message by conducting verification for a valid signature, and only messages that have been successfully verified are processed further. In V2V safety communication, there are a large number of vehicles and each vehicle transmits safety messages frequently; therefore the number of received messages per second would be large. Thus authentication of each and every received message, for example based on the IEEE 1609.2 standard, is computationally very expensive and can only be carried out with expensive dedicated cryptographic hardware. An interesting observation is that most of these routine safety messages do not result in driver warnings or control actions since we expect that the safety system would be designed to provide warnings or control actions only when the threat of collision is high.
Technical Paper

“The Influence of Idle, Drive Cycle and Accessories on the Fuel Economy of Urban Hybrid Electric Buses - Chassis Dynamometer Tests”

2003-11-10
2003-01-3438
Fuel economy can be part of a business case for a fleet making the decision to buy new HD hybrid drivetrain technologies. Chassis dynamometer tests using SAE Recommended Practice J2711 on a bus equipped with an Allison EP SYSTEM ™ hybrid system and operated on standard bus driving cycles have produced impressive gains of over 60%. Preliminary urban bus field tests, on the other hand, have shown lower fuel economy gains. The difference can be attributed, in part, to the use of accessories - most importantly air conditioning - which are parasitic loads on the vehicle. In this paper the characteristics of driving cycles are studied to determine those factors which have the strongest influence on fuel economy for hybrids. The data show that the number of stopping events in a route or cycle is a strong influence as is the average vehicle speed. Energy analysis will show the relationship of fuel economy benefit and battery energy within a driving cycle.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

“Taguchi Customer Loss Function” Based Functional Requirements

2018-04-03
2018-01-0586
Understanding customer expectations is critical to satisfying customers. Holding customer clinics is one approach to set winning targets for the engineering functional measures to drive customer satisfaction. In these clinics, customers are asked to operate and interact with vehicle systems or subsystems such as doors, lift gates, shifters, and seat adjusters, and then rate their experience. From this customer evaluation data, engineers can create customer loss or preference functions. These functions let engineers set appropriate targets by balancing risks and benefits. Statistical methods such as cumulative customer loss function are regularly applied for such analyses. In this paper, a new approach based on the Taguchi method is proposed and developed. It is referred to as Taguchi Customer Loss Function (TCLF).
Technical Paper

“Smart Panel” Electronic Circuit Breaker Control Technology

2008-11-11
2008-01-2880
This paper will discuss using Astronics “Smart Panel” illuminated control panels to control an electronic power distribution system. A discussion of wiring simplification, automatic control possibilities and real time load monitoring is presented. The challenges of retrofitting the system into older aircraft will be covered as well. The paper also explains Electronic Circuit Breaker technology, arc fault protection, panel lighting technologies, control bus options, displays, and human input technology (buttons and knobs).
Technical Paper

“Seizure-Delay” Method for Determining the Seizure Protection of EP Lubricants

1939-01-01
390146
IT does not yet seem to be recognized fully that it is the local temperature at the surface of contact and not the local specific pressure that chiefly determines the occurrence of seizure under extreme-pressure-lubrication conditions. This local temperature is the result of the temperature level of the parts lubricated, considered as a whole (“bulk” temperature) and of a superimposed instantaneous temperature rise (temperature “flash”) which is localized in the surface of contact. It appears typical for extreme-pressure-lubrication conditions, as met in gear practice, that the temperature flash is much higher than the bulk temperature. With existing conventional test methods for the determination of the protection against seizure afforded by EP lubricants, a considerable rise of the bulk temperature mostly occurs; as it cannot be controlled sufficiently; thus, leaving an unknown margin for the temperature flash, it renders impossible a reliable determination.
Technical Paper

“SHIFT-MATE” A Fuel Efficiency Monitor

1985-12-01
852340
The SHIFT-MATE is a dashboard mounted computer based device that cues a truck driver to shift more efficiently. Through electronic circuitry, key vehicle parameters are monitored, computed, then via graphic display, instructs the driver when to shift for improved fuel economy. The theory of operation is described in the text.
Technical Paper

“Prediction of In-Cylinder Pressure, Temperature, and Loads Related to the Crank Slider Mechanism of I.C. Engines: A Computational Model”

2003-03-03
2003-01-0728
This paper describes the initial works related to the study of Internal Combustion Engines, as an object of mechanical design, at the Universidad Tecnológica de Pereira. It is reported a concise, complete methodology for simple model of internal combustion engine. The emphasis of the paper is placed on the use of the in-cylinder parameters (pressure and temperature) and inertial loads in the crank-slider mechanism to derive the loads that act on all the components of the crank-slider mechanism as well as the theoretical output torque for a given geometrical structure and inertial properties. These loads can then be used to estimate the preliminary dimensions of engine components in the initial stage of engine development. To obtain the pressure and temperature inside the cylinder, under different operation parameters, such as air fuel ratio and spark angle advance, a Zero dimensional model is applied. The heat transfer from the cylinder and friction are not taken into account.
Technical Paper

“Pedestrian in the Loop”: An Approach Using Augmented Reality

2018-04-03
2018-01-1053
A large number of testing procedures have been developed to ensure vehicle safety in common and extreme driving situations. However, these conventional testing procedures are insufficient for testing autonomous vehicles. They have to handle unexpected scenarios with the same or less risk a human driver would take. Currently, safety related systems are not adequately tested, e.g. in collision avoidance scenarios with pedestrians. Examples are the change of pedestrian behaviour caused by interaction, environmental influences and personal aspects, which cannot be tested in real environments. It is proposed to use augmented reality techniques. This method can be seen as a new (Augmented) Pedestrian in the Loop testing procedure.
Technical Paper

“Omega” Fin Design for Enhanced Cooling Capability on IGBTs

2020-04-14
2020-01-0597
Vehicle electrification is a rapidly growing and developing technology. As with any new technology there are hurdles that must be overcome as development marches forward. Overcoming these obstacles will require new and innovative solutions. One area of electrification that is quickly developing is the ability to convert voltage from AC to DC and from DC to AC. This is important since the battery pack outputs a DC voltage which must be converted to AC to drive the electric motor. The reverse is true when braking, the AC voltage generated by the electric motor is converted to DC in order to charge the battery. The conversion of voltage back and forth is controlled through the use of an inverter. The inverter uses Insulated-Gate Bipolar Transistors or IGBTs which generate heat while in operation. As the IGBTs heat up their efficiency goes down. In order to maintain a high level of efficiency the circuity can be directly cooled through the use of a heat sink.
Technical Paper

“Nucleate Boiling Investigations and the Effects of Surface Roughness”

1999-03-01
1999-01-0577
The findings presented in this paper are part of a long term project aimed at raising the science of heat transfer in internal combustion engine cooling galleries. Initial work has been undertaken by the authors and an experimental facility is able to simulate different sizes of coolant passages. External heat is applied and data for the forced convective, nucleate boiling and transition or critical heat flux (CHF) regimes has been obtained. The results highlighted in this paper attempt to quantify the effects of cooling passage surface roughness on the nucleate boiling regime. Tests have been conducted using aluminium test pieces with surface finishes described as smooth, intermediate and as-cast. It has been found that the as-cast surface increases the heat flux density in the nucleate boiling region over that of the smooth and intermediate surfaces.
Technical Paper

“Next Generation” Means for Detecting Squeaks and Rattles in Instrument Panels

1997-05-20
972061
Engineers doing squeak and rattle testing of instrument panels (IP's) have successfully used large electrodynamic vibration systems to identify sources of squeaks and rattles (S&R's). Their successes led to demands to test more IP's, i.e., to increase throughput of IP's to reflect the many design, material, and/or manufacturing process changes that occur, and to do so at any stage of the development, production, or QA process. What is needed is a radically different and portable way to find S&R's in a fraction of the time and at lower capital cost without compromising S&R detection results.
Technical Paper

“Multi Vector” Field of View Design Tool

2004-03-08
2004-01-0380
A multi vector design tool to accurately predict instrument panel obscuration was developed to insure that critical legal displays in vehicles are not obscured. The concept provides for a computer generated light source shaped to replicate the human eyes. The light source is then projected onto a 3D math based arrangement and the resultant shadows are visible on the instrument panel surface and its displays. Design studios require criteria for the placement of the instrument cluster gages and displays, various controls, switches, and steering column stalks before an interior theme can be completed. Therefore, instrument panel obscuration and visibility must be determined early in the design process. The obscured areas are a function of the instrument panel surface, steering wheel rim, hub, spokes, and the location of the driver's eyes. This light source method allows engineers and designers the ability to quickly determine obscured areas.
Technical Paper

“Influence of Engine Variables on Exhaust Oxides of Nitrogen Concentrations from a Multi-Cylinder Engine”

1967-02-01
670482
The influence of engine variables on the concentration of oxides of nitrogen present in the exhaust of a multicylinder engine was studied. The concentrations of nitric oxide (NO) were measured with either a mass spectrometer or a non-dispersive infrared analyzer. The NO concentration was low for rich operation (deficient in oxygen) and increased with air-fuel ratio to a peak value at ratios slightly leaner than stoichiometric proportions. A further increase in air-fuel ratio resulted in reduced NO concentrations. Advanced spark timing, decreased manifold vacuum, increased coolant temperature and combustion chamber deposit buildup were also found to increase exhaust NO concentration. These results support either directly or indirectly the hypothesis that exhaust NO concentration is primarily a result of the peak combustion gas temperature and the available oxygen.
Technical Paper

“Hot Tube Test”-Analysis of Lubricant Effect on Diesel Engine Scuffing

1984-02-01
840262
To prevent engine scuffing in the field a new laboratory test called the Hot Tube Test has been established in order to evaluate the high temperature stability of diesel engine oils. In a strip mining application field test using 47 bulldozers powered by the same engine type, half of the engines suffered from piston scuffing failures when operated on a variety of commercially available API CD quality SAE 30 Grade engine oils. All the field test oils have been investigated using the Hot Tube Test, and an analysis of the results indicates that it would be possible to accurately predict scuffing failures by this test method. Furthermore, the reliability of this analysis has been verified by bench engine testing on reference oils. The reasons why the Hot Tube Test predicts the anti-scuffing performance of engine oils are discussed.
X