Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 39313
Technical Paper

“Virtual Engine/Powertrain/Vehicle” Simulation Tool Solves Complex Interacting System Issues

2003-03-03
2003-01-0372
An integrated simulation tool has been developed, which is applicable to a wide range of design issues. A key feature introduced for the first time by this new tool is that it is truly a single code, with identical handling of engine, powertrain, vehicle, hydraulics, electrical, thermal and control elements. Further, it contains multiple levels of engine models, so that the user can select the appropriate level for the time scale of the problem (e.g. real-time operation). One possible example of such a combined simulation is the present study of engine block vibration in the mounts. The simulation involved a fully coupled model of performance, thermodynamics and combustion, with the dynamics of the cranktrain, engine block and the driveline. It demonstrated the effect of combustion irregularity on engine shaking in the mounts.
Technical Paper

“Understanding Diesel Engine Lubrication at Low Temperature”

1990-10-01
902177
Oil pumpability in passenger car gasoline engines was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. Oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at -18°C (0°F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier had better performance than a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance.
Technical Paper

“Trapless” Trap – A Catalytic Combustion System of Diesel Particulates Using Ceramic Foam

1983-02-01
830082
“Trapless” Trap, which makes possible the effective collecting of particulates in diesel exhaust gas and their simultaneous combustion has been developed by use of a ceramic foam in combination with catalysts containing copper salt. From a TEM photograph, it was observed that the particulate was rapidly oxidized by mobile copper ion, showing worm-eaten like spots. Screening of various base metal salts by TGA presented CUCl2-KCl-NH4VO3 and CuCl2-KCl-(NH4)6Mo7O24 as very active catalysts for diesel particulate oxidation. They had thermal stability up to 900°C when they were supported on titania. The results obtained by measuring the back pressure using 1.8L diesel engine suggest the above trap to be a self-cleaning trapless trap.
Technical Paper

“The Influence of Idle, Drive Cycle and Accessories on the Fuel Economy of Urban Hybrid Electric Buses - Chassis Dynamometer Tests”

2003-11-10
2003-01-3438
Fuel economy can be part of a business case for a fleet making the decision to buy new HD hybrid drivetrain technologies. Chassis dynamometer tests using SAE Recommended Practice J2711 on a bus equipped with an Allison EP SYSTEM ™ hybrid system and operated on standard bus driving cycles have produced impressive gains of over 60%. Preliminary urban bus field tests, on the other hand, have shown lower fuel economy gains. The difference can be attributed, in part, to the use of accessories - most importantly air conditioning - which are parasitic loads on the vehicle. In this paper the characteristics of driving cycles are studied to determine those factors which have the strongest influence on fuel economy for hybrids. The data show that the number of stopping events in a route or cycle is a strong influence as is the average vehicle speed. Energy analysis will show the relationship of fuel economy benefit and battery energy within a driving cycle.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

“TFC/IW in 1982”

1982-02-01
820301
TFC/IW, total fuel consumption divided by inertia weight is reported with other engineering variables for recent EPA data for industry passenger cars and truck. TFC/IW is used in comparisons between gasoline and diesel engines, 49 States and California, passenger cars and trucks. The California fuel economy penalty due to more stringent emissions standards is discussed. The relationship between TFC/IW and ton miles per gallon is shown. Special attention is focused on 4 cylinder gasoline powered vehicles in 49 States passenger car fleet. The use of TFC/IW to answer the question, ‘What Changed?’ when comparing the fuel economies of two fleets is described.
Technical Paper

“Seizure-Delay” Method for Determining the Seizure Protection of EP Lubricants

1939-01-01
390146
IT does not yet seem to be recognized fully that it is the local temperature at the surface of contact and not the local specific pressure that chiefly determines the occurrence of seizure under extreme-pressure-lubrication conditions. This local temperature is the result of the temperature level of the parts lubricated, considered as a whole (“bulk” temperature) and of a superimposed instantaneous temperature rise (temperature “flash”) which is localized in the surface of contact. It appears typical for extreme-pressure-lubrication conditions, as met in gear practice, that the temperature flash is much higher than the bulk temperature. With existing conventional test methods for the determination of the protection against seizure afforded by EP lubricants, a considerable rise of the bulk temperature mostly occurs; as it cannot be controlled sufficiently; thus, leaving an unknown margin for the temperature flash, it renders impossible a reliable determination.
Technical Paper

“Second-Generation” SAE 5W-30 Passenger Car Engine Oils

1986-10-01
861515
High performance lubricant additive systems have been developed to formulate SAE 5W-30 passenger car engine oils which meet current and anticipated requirements of the North American original equipment manufacturers. The trend in North America is to recommend SAE 5W-30 oils that not only meet the API SF requirements for gasoline engines (“first-generation” oils), but also meet the stringent API CC requirement for light duty diesel engines (“second-generation” oils). Furthermore, the engine builders have issued “world specifications” for motor oils which incorporate additional “second-generation” SAE 5W-30 characteristics, such as enhanced API SF limits, improved fuel efficiency, an increased margin of bearing protection, and lower finished-oil phosphorus levels. The additive systems described herein exceed API SF and CC requirements as well as “second-generation” performance hurdles.
Technical Paper

“SODART” Telescope Silicon Detector Cooling System (Thermal Test Results of the Scale-Down Model)

1992-07-01
921365
The onboard “SODART” telescope silicon detector cooling system of the “Spectrum-X-Gamma” observatory, which is designed for the space objects X-ray radiation study, is described. The scale-down model of the passive cooling system description and thermal vacuum test results of this model are given. In the real cooling system the minimal detector temperature at 300 mW heat release is expected about 107 K.
Technical Paper

“Real-Time Estimation of Soot for a Wall Flow DPF Regeneration Management and an Efficient DOE for Model Calibration.”

2021-09-22
2021-26-0333
Estimation of soot deposited on a wall flow type DPF, is a vital information to ensure safe and efficient DPF management. Accuracy in determining mass of soot present inside the DPF ensures a correct regeneration management strategy in-terms of fuel efficiency and DPF safety considering soot overloading and too frequent regenerations. It also ensures an efficient detection of anomalies in the PM filtration mandated by the BSVI/EURO VI legislation as a part of On-board diagnostics. Classical approach of determining soot present inside DPF involves monitoring increase in pressure drop. Real time usage of such a model is limited by the inaccuracy of measuring pressure drop at low exhaust flows. Hence, contemporary engine controllers use pressure drop based models as a failsafe and estimate DPF soot loading by modelling soot release rate due to engine combustion and the rate at which it is oxidized.
Technical Paper

“Prediction of In-Cylinder Pressure, Temperature, and Loads Related to the Crank Slider Mechanism of I.C. Engines: A Computational Model”

2003-03-03
2003-01-0728
This paper describes the initial works related to the study of Internal Combustion Engines, as an object of mechanical design, at the Universidad Tecnológica de Pereira. It is reported a concise, complete methodology for simple model of internal combustion engine. The emphasis of the paper is placed on the use of the in-cylinder parameters (pressure and temperature) and inertial loads in the crank-slider mechanism to derive the loads that act on all the components of the crank-slider mechanism as well as the theoretical output torque for a given geometrical structure and inertial properties. These loads can then be used to estimate the preliminary dimensions of engine components in the initial stage of engine development. To obtain the pressure and temperature inside the cylinder, under different operation parameters, such as air fuel ratio and spark angle advance, a Zero dimensional model is applied. The heat transfer from the cylinder and friction are not taken into account.
Technical Paper

“Performance Emission Parameters Behavior of a DI Diesel Engine Using Al2O3 and TiO2 Nano Additive Biodiesel Blends”

2023-11-10
2023-28-0127
This study mainly focuses on the blending of Alumina and Titanium oxide nanoparticles (NP’s) in Spirulina biodiesel blends (SB20) to estimate the influence of engine (combustion, performance and emission) parameters of a diesel engine. The characterization of Al2O3 and TiO2 NP’s like SEM were reported. By using various fuel samples such as Diesel, SB20, SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO, the engine tests on the diesel engine were conducted at various load conditions. The BTE for SB20+80 ppm AO were enhanced by 12.35% and 8.4 % compared to the SB20 fuel and SB20+40 ppm AO fuel samples. The combustion parameters were improved for the NP’s as additives (Al2O3 and TiO2) fuels than the SB20 fuel sample because NP’s contain oxygen content. The parameters of engine exhaust emissions such as HC, CO and smoke are drastically diminished for the SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO fuels compared to the SB20 fuel.
Technical Paper

“Pedestrian in the Loop”: An Approach Using Augmented Reality

2018-04-03
2018-01-1053
A large number of testing procedures have been developed to ensure vehicle safety in common and extreme driving situations. However, these conventional testing procedures are insufficient for testing autonomous vehicles. They have to handle unexpected scenarios with the same or less risk a human driver would take. Currently, safety related systems are not adequately tested, e.g. in collision avoidance scenarios with pedestrians. Examples are the change of pedestrian behaviour caused by interaction, environmental influences and personal aspects, which cannot be tested in real environments. It is proposed to use augmented reality techniques. This method can be seen as a new (Augmented) Pedestrian in the Loop testing procedure.
Technical Paper

“Optimization of Operational Parameters on Engine Performance and Emissions of a Diesel Engine Powered with Mimusops Elengi Methyl Ester with Doped TiO2 Nanoparticle with Varying Injection Pressure”

2022-12-23
2022-28-0574
The current research was aimed at determining the most effective way to use alternative renewable feedstock to power a diesel engine. Mimusops elengi, a new and novel biofuel was recognized for this current study, which is widely available in the south of India. The investigation was conducted on B20 volume basis (20% Mimusops elengi methyl ester blended with 80% diesel). Furthermore, it was recognized that when the performance characteristics were traded off, the emission magnitude has slightly higher. To address the diesel engine pollution, an oxygenated nano additive like titanium oxide was dissipated only with the fuel blend at distinct mass fractions of 25 parts per million (ppm) with differing injection pressures of 180 bar, 200 bar, 220 bar, and 240 bar. The tests were created using a statistical programme known as design of experiments, which is purely based on Taguchi and response surface methodology.
Technical Paper

“OptiVent” - A New Approach for Controlling Mass Air Flow and Combustion in Direct Injection SI-Engines

2013-04-08
2013-01-0592
Combustion concepts for future SI engines try to meet CO2-emission commitments and legislation all over the world. Where the Diesel engine has an advantage by principle, the efficiency of the SI engine has to be improved significantly, while of course the exhaust emissions must not become worse. An approach is to reduce the gas exchange losses using fully variable valve trains on the intake side of the combustion engine. OptiVent is a patented new way of controlling the mass air flow in the cylinder of a combustion engine using opening valves during the compression phase of a four stroke engine. This technology regards a wider range of variability on the valvetrain components of the engine especially for opening the valves more than one time during a cycle. On the other hand it is necessary to combine this technology with direct injection to avoid fuel losses in the exhaust system and raising the exhaust hydrocarbon emission of the engine.
Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
X