Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 41252
Standard

在 9100 质量管理体系内 应用 AQAP 2110 的指南

2024-02-16
CURRENT
IA9137_ZHCN
编制和发布本文件旨在供应商遵守 9100 规定的情况下,就 AQAP-2110 的应用提供相关信息和指南。本文件的发布号为 AQAP-2110-SRD.2 和 IA9137。本文件由 NATO 和行业代表联合编制,供 NATO 和行业内使用,旨在促进 AQAP-2110 和 9100 的使用及对其之间关系的理解。当采购国使用对外军售 (FMS) 作为其采购方式时,可能需要 AQAP。 本文件旨在促进采购方及其 9100 供应商对 AQAP-2110 要求解释的通用性。 本文件内容不具有法律或合同地位,亦不会取代、增加或取消 AQAP-2110 或 9100 的任何要求。 由于可能存在多种条件(取决于工作或过程类型、所用设备和所涉人员的技能等因素),不应将本指南视为包含所有事宜,亦不应将本指南视为强加满足合同要求的具体手段或方法。相关方应意识到,可使用其他手段或方法来满足这些要求。 本指南使用者应谨记,当合同引用了 AQAP 2110,其要求对于供应商和次级供应商具有强制性。
Technical Paper

“U” Bolt Torque Influence over Leaf Springs

2014-05-07
2014-36-0024
”U” bolts are fixing elements and they are used to clamp an elastic joint. From the past, they still looking as an old design and unfortunately, suspension engineers are not specialists in fasteners and elastic joints. That is why we will show important assumptions and concepts to design and specifications this clamp element “U” bolt and its influence over leaf-springs. Currently, “U” bolt is used to clamp an elastic or elastic-plastic joint of heavy duty suspension, formed by leaf-spring, axle, spring pad, “U” bolt plate. This kind of suspension is typically used to trucks, buses and trailers. We are wondering, which one important assumption that an engineer must be careful when designs a new suspension changing from old designs to an updated technology. We provide a theoretical analysis and a FEA analysis to compare torque efficacy x leaf-spring reactions and what are effects this relationship can cause in a suspension.
Technical Paper

“The Impact Of The Microprocessor On Aircraft Electric System Control Philosophy”

1981-10-01
811085
The use of microprocessors for the implementation of control functions in aircraft electric systems has become a reality. This paper presents a brief survey of these systems along with a typical system block diagram. A description of the diagram highlights the advantages of microprocessor systems over existing noncomputerized control schemes. The second half of the paper discusses the adaptability of more advanced microprocessor systems in the next generation of aircraft electric systems. These powerful new computers will allow digital control and protection of single unit and paralleled generating and starting systems, as well as providing even more effective built-in-test.
Technical Paper

“Smart Panel” Electronic Circuit Breaker Control Technology

2008-11-11
2008-01-2880
This paper will discuss using Astronics “Smart Panel” illuminated control panels to control an electronic power distribution system. A discussion of wiring simplification, automatic control possibilities and real time load monitoring is presented. The challenges of retrofitting the system into older aircraft will be covered as well. The paper also explains Electronic Circuit Breaker technology, arc fault protection, panel lighting technologies, control bus options, displays, and human input technology (buttons and knobs).
Technical Paper

“Sky Hooks” for Automobiles

1935-01-01
350109
IN this paper the authors present some experimental results obtained by using the analysis outlined by Prof. James J. Guest before the Institution of Automobile Engineers, in 1926. To make the experimental work more understandable, they present the essential points of Professor Guest's analysis. Professor Guest begins his analysis of the movements of a car body with the simplest set of conditions and presents a graphical as well as an algebraic solution. He then includes one additional factor after another in his analysis until the principal factors in car suspension are included. After all factors are considered, the essential structure of the simple analysis is retained. The authors' efforts at the experimental determination of the moment of inertia of passenger cars were started in January, 1932, on Sir Charles Dennistoun Burney's “tear-drop” design with which he visited leading American manufacturers.
Technical Paper

“Seizure-Delay” Method for Determining the Seizure Protection of EP Lubricants

1939-01-01
390146
IT does not yet seem to be recognized fully that it is the local temperature at the surface of contact and not the local specific pressure that chiefly determines the occurrence of seizure under extreme-pressure-lubrication conditions. This local temperature is the result of the temperature level of the parts lubricated, considered as a whole (“bulk” temperature) and of a superimposed instantaneous temperature rise (temperature “flash”) which is localized in the surface of contact. It appears typical for extreme-pressure-lubrication conditions, as met in gear practice, that the temperature flash is much higher than the bulk temperature. With existing conventional test methods for the determination of the protection against seizure afforded by EP lubricants, a considerable rise of the bulk temperature mostly occurs; as it cannot be controlled sufficiently; thus, leaving an unknown margin for the temperature flash, it renders impossible a reliable determination.
Technical Paper

“Rubber Coupling” at a 4×4 Transmition System

2003-11-18
2003-01-3684
There are many different vibration sources in a car. Engine, gears, road roughness, impacts against the wheels cause vibration and sound that can decrease the parts and the car durability as well as affect drivability, safety and passengers and community comfort. In 4×4 cars, some extra vibration sources are the parts responsible for transmitting the torque and power to the rear wheels. Each of them has their own vibration modes, excited mostly by its imbalance or by the second order engine vibration. The engine vibration is a very well known phenomena and the rear driveshaft is designed not to have any vibration mode in the range of frequencies that the engine works or its second order. The imbalance of a driveshaft is also a design requirement. That means, the acceptable imbalance of the driveshaft is limited to a maximum value.
Technical Paper

“Rds_on” Based OBD for Pre-Supply Fuel Pump Driver Modules

2017-01-10
2017-26-0348
In automotive electronics on-board diagnostics does the fault diagnosis and reporting. It provides the level of robustness required for the control electronics against various faults. The amount of diagnostic information available via on board diagnostics are depends on the type of vehicle. Pre-supply fuel pump is the component in the common rail hydraulic system. It pumps the fuel from the fuel tank to the inlet valve of the high pressure fuel pump. Electronic control unit synchronizes its operation with high pressure fuel pump. A dedicated driver module in the ECU controls the operation of pre-supply fuel pump. The driver module consist of an ASIC with internal voltage, current monitoring modules for the fault diagnosis and the pre-drivers to control external HS and LS power stages. The software part of the OBD programmed in the internal memory of the ASIC. The “Rds_on” of the power MOSFETs are used for the fault detection purpose.
Technical Paper

“Projection-by-Projection” Approach: A Spectral Method for Multiaxial Random Fatigue

2014-04-01
2014-01-0924
This paper presents a fatigue criterion based on stress invariants for the frequency-based analysis of multiaxial random stresses. The criterion, named “Projection-by-Projection” (PbP) spectral method, is a frequency-based reformulation of its time-domain definition. In the time domain PbP method, a random stress path is first projected along the axes of a principal reference frame in the deviatoric space, thus defining a set of uniaxial random stress projections. In the frequency-domain approach, the damage of stress projections is estimated from the stress PSD matrix. Fatigue damage of the multiaxial stress is next calculated by summing up the fatigue damage of every stress projection. The criterion is calibrated on fatigue strength properties for axial and torsion loading. The calculated damage is shown to also depend on the relative ratio of hydrostatic to deviatoric stress components.
Technical Paper

“Omega” Fin Design for Enhanced Cooling Capability on IGBTs

2020-04-14
2020-01-0597
Vehicle electrification is a rapidly growing and developing technology. As with any new technology there are hurdles that must be overcome as development marches forward. Overcoming these obstacles will require new and innovative solutions. One area of electrification that is quickly developing is the ability to convert voltage from AC to DC and from DC to AC. This is important since the battery pack outputs a DC voltage which must be converted to AC to drive the electric motor. The reverse is true when braking, the AC voltage generated by the electric motor is converted to DC in order to charge the battery. The conversion of voltage back and forth is controlled through the use of an inverter. The inverter uses Insulated-Gate Bipolar Transistors or IGBTs which generate heat while in operation. As the IGBTs heat up their efficiency goes down. In order to maintain a high level of efficiency the circuity can be directly cooled through the use of a heat sink.
Technical Paper

“Multi Vector” Field of View Design Tool

2004-03-08
2004-01-0380
A multi vector design tool to accurately predict instrument panel obscuration was developed to insure that critical legal displays in vehicles are not obscured. The concept provides for a computer generated light source shaped to replicate the human eyes. The light source is then projected onto a 3D math based arrangement and the resultant shadows are visible on the instrument panel surface and its displays. Design studios require criteria for the placement of the instrument cluster gages and displays, various controls, switches, and steering column stalks before an interior theme can be completed. Therefore, instrument panel obscuration and visibility must be determined early in the design process. The obscured areas are a function of the instrument panel surface, steering wheel rim, hub, spokes, and the location of the driver's eyes. This light source method allows engineers and designers the ability to quickly determine obscured areas.
Technical Paper

“Just-in-Time” Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

2009-04-20
2009-01-1384
Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle's life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These “Just-in-Time” methods provide maximum effective battery life while getting virtually the same electricity from the grid.
Technical Paper

“Insert and Fly” Using PCMCIA PC Cards in the Avionics Market

1994-11-01
942553
When looking into using PCMCIA PC Cards in the avionics market, three areas must be researched. The first is what are the applications and benefits of using the PC Cards while in flight, followed by the applications and benefits on the ground, and thirdly on how to make a PC Card that would stand up to the rugged avionics environment. PCMCIA PC Cards can be used in all aspects of flight. Three possible applications on the ground are; paperless documentation, modifications, flightline changes. Once airborne, PC Cards can be removed and a different functionality card can be inserted. One PC card socket can be used for many different functions during one flight. Some of the possible applications for PC Cards inflight are; flight plan changes, backup Line Replaceable Units (LRUs), and solid state data collection.
Technical Paper

“Implementation of Lithium Ion Battery System” for FCX Clarity

2009-04-20
2009-01-1013
A lithium ion battery system has been developed for use in Honda's FCX Clarity fuel cell vehicle. This represents the first time that Honda has employed lithium ion batteries. The battery system equals the high level of power of the ultracapacitor system used in the previous FCX vehicle but achieves a higher level of energy, contributing to various improvements in performance, such as the Clarity's superior acceleration feel and improved fuel efficiency. The system displays sufficient durability and reliability at the same time as satisfying requirements from the perspective of safety. In addition, positioning the battery system under the floor of the vehicle has increased cabin space, boosting the Clarity's commercial appeal.
Technical Paper

“GoldDrive”-Infinite Variable Drive Consisting of Fixed Displacement Pumps & Motors

2000-09-11
2000-01-2544
1 “GoldDrive” is an infinite variable, bi-directional drive consisting of hydraulic fixed displacement pumps and motors. As a matter of fact “GoldDrive” is the hydraulic equivalent of the mechanical differential. The idea behind the development of “GoldDrive” is to overcome the limitation of starting torque. According to the traditional equation, torque is equal to power over speed and as a result, we need an infinite amount of torque to start a load at zero output speed. The solution is Slippage, slippage of electrical, mechanical, hydraulic and pneumatic transmissions. “GoldDrive” enables us to achieve maximum efficiency and starting torque at zero output speed without slippage.
Technical Paper

“Getting the Best Out of 12 Volts” The Development of an Advanced Electrical Architecture Vehicle

1994-03-01
940368
The paper focuses and develops issues raised by the SAE paper ‘THE FUTURE OF VEHICLE ELECTRICAL POWER SYSTEMS AND THEIR IMPACT ON SYSTEM DESIGN’ [1] and describes the realisation of a vehicle with a 12 V architecture of flexible configuration and a power management function. The paper describes the methodology, reasoning and mission behind the creation of the vehicle, developed after collaborative exercises in Europe and the USA, and resulting in a joint programme involving a major vehicle manufacturer and a European system supplier. The electrical system is becoming the focus of activity world-wide due to rapid changes in vehicle requirements, in the areas of safety, environmental and functional demands. There are opportunities for:- (a) Improved starting (b) Integrated management of power generation and demand. (c) Higher system integrity (d) Higher efficiency (e) Improvement of the vehicle electrical environment, giving benefits in component cost.
Technical Paper

“Evaluation of the Drift of vehicle Inspection/Maintenance Emission Analyzers in use- A California Case Study”

1989-05-01
891119
Quality assurance (QA) in motor vehicle emissions inspection/maintenance (I/M) programs is a continuing concern, especially in decentralized programs with hundreds or even thousands of licensed stations. The emissions analyzers used in such stations are an important focus of governmental QA efforts because of the central role of analyzers in determining which vehicles need to be repaired. Therefore, the In-use performance of I/M emission analyzers has a large impact on the quality of 1/M programs as a whole. This paper reports on the results of an investigation in California designed to determine in-use performance of emission analyzers in the field. The investigation was designed to evaluate both drift rates and the ability of analyzer systems with automatic gas calibration capability to correct analyzer responses outside of accepted tolerances.
X