Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Human Performance Evaluation of Heavy Truck Side Object Detection Systems

Side object detection systems (SODS) are collision warning systems which alert drivers to the presence of traffic alongside their vehicle within defined detection zones. The intent of SODS is to reduce collisions during lane changes and merging maneuvers. This study examined the effect of right SODS on the performance of commercial vehicle drivers as a means of assessing the impact of these systems on safety. In this study, eight professional truck drivers drove a tractor-semitrailer equipped with four different sets of SODS hardware or side view mirror configurations. These subjects had no previous experience with SODS. Subjects were tested with two right SODS (a radar-based system and an ultrasonic-based system), a fender-mounted convex mirror, and, for comparison, standard side view mirrors only. For each case, subjects drove the test vehicle through a set route for one day.
Technical Paper

Human Factors Evaluation of Existing Side Collision Avoidance System Driver Interfaces

This paper describes the assessment of driver interfaces of a type of electronics-based collision avoidance systems that has been recently developed to assist drivers of vehicles in avoiding certain types of collisions. The electronics-based crash avoidance systems studied were those which detect the presence of objects located on the left and/or right sides of the vehicle, called Side Collision Avoidance Systems, or SCAS. As many SCAS as could be obtained, including several pre-production prototypes, were acquired and tested. The testing focused on measuring sensor performance and assessing the qualities of the driver interfaces. This paper presents only the results of the driver interface assessments. The sensor performance data are presented in the NHTSA report “Development of Performance Specifications for Collision Avoidance Systems for Lane Changing, Merging, and Backing - Task 3 - Test of Existing Hardware Systems” [1].
Technical Paper

A Reliability Theory Approach to Estimate the Potential Effectiveness of a Crash Avoidance System to Support Lane Change Decisions

This paper presents the methodology and initial results of an effectiveness estimation effort applied to lane change crash avoidance systems. The lane change maneuver was considered to be composed of a decision phase and an execution phase. The decision phase begins when the driver desires to perform a lane change. It continues until the driver turns the handwheel to move the vehicle laterally into the new lane or until the driver decides to postpone the lane change. During the decision phase, the driver gathers information about the road scene ahead and either present or upcoming traffic or obstacles in the destination lane. The execution phase begins when the driver starts the move into the new lane and continues until the vehicle has been laterally stabilized in the destination lane. If the driver aborts the lane change once started, the maneuver execution phase concludes when the vehicle has been laterally stabilized in the original lane.