Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 48060
Technical Paper

“Trapless” Trap – A Catalytic Combustion System of Diesel Particulates Using Ceramic Foam

1983-02-01
830082
“Trapless” Trap, which makes possible the effective collecting of particulates in diesel exhaust gas and their simultaneous combustion has been developed by use of a ceramic foam in combination with catalysts containing copper salt. From a TEM photograph, it was observed that the particulate was rapidly oxidized by mobile copper ion, showing worm-eaten like spots. Screening of various base metal salts by TGA presented CUCl2-KCl-NH4VO3 and CuCl2-KCl-(NH4)6Mo7O24 as very active catalysts for diesel particulate oxidation. They had thermal stability up to 900°C when they were supported on titania. The results obtained by measuring the back pressure using 1.8L diesel engine suggest the above trap to be a self-cleaning trapless trap.
Technical Paper

“The Network Vehicle - A Glimpse into the Future of Mobile Multi-Media”

1998-11-09
982901
The Network Vehicle is the Delphi Automotive Systems' vision for the future convergence of the communications infrastructure, computers, and the automobile. It features many advanced functions such as: satellite video, Internet access, virtual navigation, remote vehicle diagnostics and control, games, mobile office, automotive web site, and customized real-time stock quotes and sports scores. These features are enabled by an integrated planar antenna that is capable of multiple satellite reception, a client-server network architecture, and unique human-vehicle-interfaces. The software application is written in Java, using API's (Application Programming Interfaces) to reduce the complexity and cost of the source code.
Technical Paper

“Second-Generation” SAE 5W-30 Passenger Car Engine Oils

1986-10-01
861515
High performance lubricant additive systems have been developed to formulate SAE 5W-30 passenger car engine oils which meet current and anticipated requirements of the North American original equipment manufacturers. The trend in North America is to recommend SAE 5W-30 oils that not only meet the API SF requirements for gasoline engines (“first-generation” oils), but also meet the stringent API CC requirement for light duty diesel engines (“second-generation” oils). Furthermore, the engine builders have issued “world specifications” for motor oils which incorporate additional “second-generation” SAE 5W-30 characteristics, such as enhanced API SF limits, improved fuel efficiency, an increased margin of bearing protection, and lower finished-oil phosphorus levels. The additive systems described herein exceed API SF and CC requirements as well as “second-generation” performance hurdles.
Technical Paper

“Real-Time Estimation of Soot for a Wall Flow DPF Regeneration Management and an Efficient DOE for Model Calibration.”

2021-09-22
2021-26-0333
Estimation of soot deposited on a wall flow type DPF, is a vital information to ensure safe and efficient DPF management. Accuracy in determining mass of soot present inside the DPF ensures a correct regeneration management strategy in-terms of fuel efficiency and DPF safety considering soot overloading and too frequent regenerations. It also ensures an efficient detection of anomalies in the PM filtration mandated by the BSVI/EURO VI legislation as a part of On-board diagnostics. Classical approach of determining soot present inside DPF involves monitoring increase in pressure drop. Real time usage of such a model is limited by the inaccuracy of measuring pressure drop at low exhaust flows. Hence, contemporary engine controllers use pressure drop based models as a failsafe and estimate DPF soot loading by modelling soot release rate due to engine combustion and the rate at which it is oxidized.
Technical Paper

“Rds_on” Based OBD for Pre-Supply Fuel Pump Driver Modules

2017-01-10
2017-26-0348
In automotive electronics on-board diagnostics does the fault diagnosis and reporting. It provides the level of robustness required for the control electronics against various faults. The amount of diagnostic information available via on board diagnostics are depends on the type of vehicle. Pre-supply fuel pump is the component in the common rail hydraulic system. It pumps the fuel from the fuel tank to the inlet valve of the high pressure fuel pump. Electronic control unit synchronizes its operation with high pressure fuel pump. A dedicated driver module in the ECU controls the operation of pre-supply fuel pump. The driver module consist of an ASIC with internal voltage, current monitoring modules for the fault diagnosis and the pre-drivers to control external HS and LS power stages. The software part of the OBD programmed in the internal memory of the ASIC. The “Rds_on” of the power MOSFETs are used for the fault detection purpose.
Technical Paper

“Projection-by-Projection” Approach: A Spectral Method for Multiaxial Random Fatigue

2014-04-01
2014-01-0924
This paper presents a fatigue criterion based on stress invariants for the frequency-based analysis of multiaxial random stresses. The criterion, named “Projection-by-Projection” (PbP) spectral method, is a frequency-based reformulation of its time-domain definition. In the time domain PbP method, a random stress path is first projected along the axes of a principal reference frame in the deviatoric space, thus defining a set of uniaxial random stress projections. In the frequency-domain approach, the damage of stress projections is estimated from the stress PSD matrix. Fatigue damage of the multiaxial stress is next calculated by summing up the fatigue damage of every stress projection. The criterion is calibrated on fatigue strength properties for axial and torsion loading. The calculated damage is shown to also depend on the relative ratio of hydrostatic to deviatoric stress components.
Technical Paper

“Performance Emission Parameters Behavior of a DI Diesel Engine Using Al2O3 and TiO2 Nano Additive Biodiesel Blends”

2023-11-10
2023-28-0127
This study mainly focuses on the blending of Alumina and Titanium oxide nanoparticles (NP’s) in Spirulina biodiesel blends (SB20) to estimate the influence of engine (combustion, performance and emission) parameters of a diesel engine. The characterization of Al2O3 and TiO2 NP’s like SEM were reported. By using various fuel samples such as Diesel, SB20, SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO, the engine tests on the diesel engine were conducted at various load conditions. The BTE for SB20+80 ppm AO were enhanced by 12.35% and 8.4 % compared to the SB20 fuel and SB20+40 ppm AO fuel samples. The combustion parameters were improved for the NP’s as additives (Al2O3 and TiO2) fuels than the SB20 fuel sample because NP’s contain oxygen content. The parameters of engine exhaust emissions such as HC, CO and smoke are drastically diminished for the SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO fuels compared to the SB20 fuel.
Technical Paper

“POSSIBILITIES IN THE FIELD OF DRY LUBRICANTS”

1958-01-01
580278
Research information on solid lubricants has been compiled for consideration in the possible use of such materials in aircraft electrical equipment. Solid lubricants are capable of lubricating at the maximum temperatures (600° F) for aircraft electrical equipment. Many solids that adhere well to metals may be useful lubricants; those with layer-lattice structure usually give low friction. Solid lubricants are most commonly used as bonded films but the use of fluid carriers and surface reaction products have considerable merit.
Technical Paper

“Optimization of Operational Parameters on Engine Performance and Emissions of a Diesel Engine Powered with Mimusops Elengi Methyl Ester with Doped TiO2 Nanoparticle with Varying Injection Pressure”

2022-12-23
2022-28-0574
The current research was aimed at determining the most effective way to use alternative renewable feedstock to power a diesel engine. Mimusops elengi, a new and novel biofuel was recognized for this current study, which is widely available in the south of India. The investigation was conducted on B20 volume basis (20% Mimusops elengi methyl ester blended with 80% diesel). Furthermore, it was recognized that when the performance characteristics were traded off, the emission magnitude has slightly higher. To address the diesel engine pollution, an oxygenated nano additive like titanium oxide was dissipated only with the fuel blend at distinct mass fractions of 25 parts per million (ppm) with differing injection pressures of 180 bar, 200 bar, 220 bar, and 240 bar. The tests were created using a statistical programme known as design of experiments, which is purely based on Taguchi and response surface methodology.
Technical Paper

“OptiVent” - A New Approach for Controlling Mass Air Flow and Combustion in Direct Injection SI-Engines

2013-04-08
2013-01-0592
Combustion concepts for future SI engines try to meet CO2-emission commitments and legislation all over the world. Where the Diesel engine has an advantage by principle, the efficiency of the SI engine has to be improved significantly, while of course the exhaust emissions must not become worse. An approach is to reduce the gas exchange losses using fully variable valve trains on the intake side of the combustion engine. OptiVent is a patented new way of controlling the mass air flow in the cylinder of a combustion engine using opening valves during the compression phase of a four stroke engine. This technology regards a wider range of variability on the valvetrain components of the engine especially for opening the valves more than one time during a cycle. On the other hand it is necessary to combine this technology with direct injection to avoid fuel losses in the exhaust system and raising the exhaust hydrocarbon emission of the engine.
Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

“Living and Mobility” - Minimization of the Overall Energy Consumption by Using Synergetic Effects and Predictive Information

2012-04-16
2012-01-0496
Issues relating to the reduction of CO₂ emissions and energy consumption are currently more important than ever before. In the construction engineering and automotive sectors research and development efforts are focused closely on efficient buildings and automobiles. The designated target is a reduction in greenhouse gas emissions and overall energy demand. However, almost all approaches focus solely on either "buildings" or "mobility." By considering both aspects as a single holistic system, further energy saving potential arises due to synergetic effects. The goal of current research projects relating to Smart Homes and Vehicle to Building (V2B) is to smooth the electrical load profile on a household level rather than to reduce the individual-related total energy consumption and thereby the CO₂ emissions.
Technical Paper

“KATPROG” for the Determination of an Optimal Cost Effective Catalyst System

2001-01-10
2001-26-0016
An two-dimensional axial symmetrical finite volume model will be introduced for the calculation of catalytic converters. It is able to predict transient temperatures and conversion rates in different converter systems according to the driving conditions. Input data are the mass-flow rate, the converter inlet temperature and the raw emissions. The performance of this model is demonstrated on an Indian motorcycle application. Cold start behavior and peak temperatures are investigated. This model has proven to be an effective tool for the preselection of an optimal cost effective catalyst system.
Technical Paper

“Investigation of High Achievable Pollutant Reduction on a “State of the Art” Indian 2 Wheelers - Technology Road Map to a Cleaner Air”

2015-11-17
2015-32-0802
Affordable, efficient and durable catalytic converters for the two and three wheeler industry in developing countries are required to reduce vehicle emissions and to participate in a cleaner and healthier environment. As a contribution Continental Emitec started a comprehensive testing program with a state of the art 180 cc Bharat Stage (BS) III Indian motorcycle. The program consists of testing the state of the art of Metallic substrates with structured foils with various catalyst sizes and positions (original or close coupled). The publication presents a short literature survey and the results of the investigation with a big catalyst volume mounted in underfloor position as well as in close coupled position, gained over the World-wide harmonized Motorcycle Test Cycle, considering the two possible vehicle classifications of this motorcycle, Sub-Class 2.1 and Sub-Class 2.2.
Technical Paper

“Influence of Engine Variables on Exhaust Oxides of Nitrogen Concentrations from a Multi-Cylinder Engine”

1967-02-01
670482
The influence of engine variables on the concentration of oxides of nitrogen present in the exhaust of a multicylinder engine was studied. The concentrations of nitric oxide (NO) were measured with either a mass spectrometer or a non-dispersive infrared analyzer. The NO concentration was low for rich operation (deficient in oxygen) and increased with air-fuel ratio to a peak value at ratios slightly leaner than stoichiometric proportions. A further increase in air-fuel ratio resulted in reduced NO concentrations. Advanced spark timing, decreased manifold vacuum, increased coolant temperature and combustion chamber deposit buildup were also found to increase exhaust NO concentration. These results support either directly or indirectly the hypothesis that exhaust NO concentration is primarily a result of the peak combustion gas temperature and the available oxygen.
Technical Paper

“Impact of Design Principles on End-of-Life and Recycling”

2024-01-16
2024-26-0163
Automotive industry is a major contributor to global carbon dioxide (CO2) emissions and waste generation. Not only do vehicles produce emissions during usage, but they also generate emissions during production phase and end of life disposal. There is an urgent need to address sustainability and circularity issues in this sector. This paper explores how circularity and CO2 reduction principles can be applied to design and production of automotive parts, with the aim of reducing the environmental impact of these components throughout their life cycle. Also, this paper highlights the impact of design principles on End-of-Life Management of vehicles. As Design decisions of Component impacts up to 80% of emissions [1], it is important to focus on this phase for major contribution in reduction of emissions.
Technical Paper

“Future” Diesel Fuel Compositions - Their Influence on Particulates

1988-08-01
881173
Five different diesel fuels, having been made available by the mineral oil industry within the framework of a research program of the Coordinating European Council (CEC/PF-26), were examined in addition to this program by the Klöckner-Humboldt-Deutz AG by means of the 13-mode test in accordance with the former US legislation and the ECE regulation No. 49 and by US Transient Tests. The results have been compared with results based on commercial European diesel fuel. There has been observed the emission behaviour of an 8-cylinder NA engine with a “state of the art” direct fuel injection system by particularly taking into consideration the particulate emission and the particulate components. The gaseous emissions, particularly CO and HC, are unfavourably influenced by low cetane numbers being associated with increased aromaticity in the diesel fuel.
X