Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 18305
Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

“Web-ACSYNT”: Conceptual-Level Aircraft Systems Analysis on the Internet

1997-10-01
975509
A Web-based version of the aircraft design program ACSYNT has been created. “Web-ACSYNT” provides the user with a familiar user interface and is accessible from multiple platforms. Analyses are based upon a set of baseline aircraft models which can be modified through a carefully selected set of parameters related to weight, aerodynamics, propulsion, economics, and mission. The software is intended to become one of the models that comprise the Aviation System Analysis Capability (ASAC) currently being developed by NASA under the Advanced Subsonic Technology (AST) program.
Technical Paper

“Second-Generation” SAE 5W-30 Passenger Car Engine Oils

1986-10-01
861515
High performance lubricant additive systems have been developed to formulate SAE 5W-30 passenger car engine oils which meet current and anticipated requirements of the North American original equipment manufacturers. The trend in North America is to recommend SAE 5W-30 oils that not only meet the API SF requirements for gasoline engines (“first-generation” oils), but also meet the stringent API CC requirement for light duty diesel engines (“second-generation” oils). Furthermore, the engine builders have issued “world specifications” for motor oils which incorporate additional “second-generation” SAE 5W-30 characteristics, such as enhanced API SF limits, improved fuel efficiency, an increased margin of bearing protection, and lower finished-oil phosphorus levels. The additive systems described herein exceed API SF and CC requirements as well as “second-generation” performance hurdles.
Technical Paper

“RoHS” Compliant Chrome - Free Conversion Coating for Aerospace Manufacturing

2006-09-12
2006-01-3130
This paper presents, chemistry, test data and processing procedures on a non toxic and environmentally friendly chrome-free conversion coating alternative with the same level of adhesion and secondary corrosion resistance as that found in chrome containing conversion coating systems. Test data from military and independent sources will be presented on secondary coating adhesion, electrical conductivity, filiform and neutral salt-spray corrosion resistance as compared to chromate based systems .on magnesium, aluminum and zinc and their respective alloys. The European “RoSH” initiative will not allow for the presence of any hexavalent chromium on imported electrical components as of July first of 2006. Trivalent chromium based systems generate hexavalent chromium due to the oxidation of the trivalent chromium and as such will not be allowed.
Technical Paper

“Projection-by-Projection” Approach: A Spectral Method for Multiaxial Random Fatigue

2014-04-01
2014-01-0924
This paper presents a fatigue criterion based on stress invariants for the frequency-based analysis of multiaxial random stresses. The criterion, named “Projection-by-Projection” (PbP) spectral method, is a frequency-based reformulation of its time-domain definition. In the time domain PbP method, a random stress path is first projected along the axes of a principal reference frame in the deviatoric space, thus defining a set of uniaxial random stress projections. In the frequency-domain approach, the damage of stress projections is estimated from the stress PSD matrix. Fatigue damage of the multiaxial stress is next calculated by summing up the fatigue damage of every stress projection. The criterion is calibrated on fatigue strength properties for axial and torsion loading. The calculated damage is shown to also depend on the relative ratio of hydrostatic to deviatoric stress components.
Technical Paper

“POSSIBILITIES IN THE FIELD OF DRY LUBRICANTS”

1958-01-01
580278
Research information on solid lubricants has been compiled for consideration in the possible use of such materials in aircraft electrical equipment. Solid lubricants are capable of lubricating at the maximum temperatures (600° F) for aircraft electrical equipment. Many solids that adhere well to metals may be useful lubricants; those with layer-lattice structure usually give low friction. Solid lubricants are most commonly used as bonded films but the use of fluid carriers and surface reaction products have considerable merit.
Technical Paper

“Model Based Predictive Control of MELISSA Photobioreactors. Steady State Determination”

1994-06-01
941411
Mathematical modeling and control of artificial ecosystems, such as MELISSA, require first the study of physical and biological characteristics in optimal and limiting conditions. Following the previous determination of the stoichiometric equations (Spirulina compartment) and regarding the two phototrophic compartments of MELISSA (Rhodospirillaceae and Spirulina), we have first to focus our control study on the growth kinetics for the light source. In this paper, we recall the theoretical equations of microbial growth kinetics and emphasise the problem of the light transfer in a photobioreactor. We present their adaptations to our pilot plant taking into account technological and biological specifics (lamp spectrum, working illuminated volume, growth rate,…). We then develop the principles and structure of the control system and describe tests of both the hardware and software for several steady state configurations.
Technical Paper

“Meta-modeling”, Optimization and Robust Engineering of Automotive Systems Using Design of Experiments

2001-03-05
2001-01-3848
This paper describes the application of statistical techniques known as Design of Experiments (D.O.E.) to efficiently use the results of numerical analysis data in order to improve the configuration of automotive systems. The general framework of these techniques is presented in a format aiming at the design engineer as their end user. Besides, a case study is presented with the purpose of illustrating their practical use. The first step of the case study is to build predictive models for the behaviour of the automotive system being developed by means of the Response Surface Method (RSM), using the proper D.O.E. options. Once these predictive models are available, automatic numerical optimization algorithms are used to improve the responses of interest for given operating conditions. Finally, the automotive systems are robust designed taking into account that the operating conditions vary randomly.
Technical Paper

“MONOGAL”: A New Anti-Corrosion Material for the Automotive Industry

1982-02-01
820335
MONOGAL is a coated steel developped to improve the corrosion resistance of exposed automotive body applications. Its process os based on the brittleness of the η zinc coating in a range of temperatures below the melting point of the zinc. MONOGAL is produced on a hot dip galvanizing line; at the exit of the pot the free zinc is brushed off the light side of the differentially coated sheet. Side 1 of MONOGAL presents a very thin and continuous layer of iron-zinc diffusion alloy with no free zinc. Side 2 is a standard G90 or G60 zinc coating. The iron-zinc alloy layer has excellent anti-galling properties which improve the formability of MONOGAL over two side hot dip galvanized steel with the same r value. MONOGAL also shows good weldability, paintability and corrosion resistance.
Technical Paper

“Investigation of High Achievable Pollutant Reduction on a “State of the Art” Indian 2 Wheelers - Technology Road Map to a Cleaner Air”

2015-11-17
2015-32-0802
Affordable, efficient and durable catalytic converters for the two and three wheeler industry in developing countries are required to reduce vehicle emissions and to participate in a cleaner and healthier environment. As a contribution Continental Emitec started a comprehensive testing program with a state of the art 180 cc Bharat Stage (BS) III Indian motorcycle. The program consists of testing the state of the art of Metallic substrates with structured foils with various catalyst sizes and positions (original or close coupled). The publication presents a short literature survey and the results of the investigation with a big catalyst volume mounted in underfloor position as well as in close coupled position, gained over the World-wide harmonized Motorcycle Test Cycle, considering the two possible vehicle classifications of this motorcycle, Sub-Class 2.1 and Sub-Class 2.2.
Technical Paper

“Ease of Driving” Road Classification for Night-time Driving Conditions

2016-04-05
2016-01-0119
This paper is an extension of our previous work on the CHASE (Classification by Holistic Analysis of Scene Environment) algorithm, that automatically classifies the driving complexity of a road scene image during day-time conditions and assigns it an ‘Ease of Driving’ (EoD) score. At night, apart from traffic variations and road type conditions, illumination changes are a major predominant factor that affect the road visibility and the driving easiness. In order to resolve the problem of analyzing the driving complexity of roads at night, a brightness detection module is incorporated in our end-to-end nighttime EoD system, which computes the ‘brightness factor’ (bright or dark) for that given night-time road scene. The brightness factor along with a multi-level machine learning classifier is then used to classify the EoD score for a night-time road scene. Our end-to-end ‘Night-time EoD system’ is a real-time onboard system implemented and tested on road scene data collected in Japan.
Technical Paper

“DELRIN” ACETAL RESIN —a new engineering material

1959-01-01
590033
“DELRIN” is a new thermoplastic which offers high strength, excellent thermal stability, good fatigue life, low creep, and excellent solvent resistance. This paper describes the physical and chemical properties of the material, and the range of possible uses. The material is easily fabricated into complex shapes by standard injection-molding techniques. Also, it can be easily joined to itself or to other materials. The authors think that the material offers advantages over metals in its good fric-tional properties, abrasion resistance, and corrosion resistance.
Technical Paper

“CDaero” - A Parametric Aerodynamic Drag Prediction Tool

1998-02-23
980398
The objective of the development of the aerodynamic drag predictive tool CDaero was for use as a module for the Automobile Design Support System (AutoDSS). CDaero is an empirically based drag coefficient predictive tool based initially on the MIRA (Motor Industry Research Association) algorithm. The development philosophy was to be able to predict the aerodynamic drag coefficient of an automobile with knowledge of the features of the surface geometry control curves. These are the curves that control the 3-dimensional geometry as seen in the profile, plan and front and rear views. CDaero has been developed in a computing environment using the equation solver TKSolver™. Fifty-one input feature values are first determined from the automobile geometry and then entered into the program. CDaero models the drag coefficient with thirteen different components covering the basic body, as well as additional components such as the wheels, mud flaps, etc.
Technical Paper

¼ Scale VehicleWake Pattern Analysis using Near-Wall PIV

2006-04-03
2006-01-1027
3-D Flow separations such as those that occur on the rear end of a vehicle have an impact on wall pressure distribution, hence on aerodynamic forces. The identification of these phenomena can be made through the analysis of skin friction patterns, which consist of the “footprints” of flow separations. These can be determined from qualitative and quantitative data obtained from near-wall PIV measurements. The wake flow of different configurations of a simplified 1/4 scale car model are analyzed. The influence of the slant angle and the Reynolds number on 3-D separated flow patterns and their induced pressure distribution is addressed, based on near-wall PIV, standard PIV and wall pressure measurements. This enables to understand how a topological change (the size or shape of a separation pattern) modifies the associated pressure distribution (therefore the drag coefficient). Finally, insights into instantaneous topology identification are presented.
Technical Paper

xEV Propulsion System Control-Overview and Current Trends

2021-04-06
2021-01-0781
Propulsion system control algorithms covering the functional needs of xEV propulsion (‘x’ donates P0-P4 configurations) systems are presented in this paper. The scope and foundation are based on generic well-established HEV controller architectures. However, unlike conventional HEV (series, parallel and power split) powertrains, the next generation of integrated electric propulsion configurations will utilize a single micro controller that supports multiple control functions ranging from the electric machines, inverters, actuators, clutch solenoids, coolant pumps, etc. This presents a unique challenge to architect control algorithms within the AUTOSAR framework while satisfying the complex timing requirements of motor/generator-inverter (MGi) control and increased interface definitions between software components to realize functional integration between the higher level propulsion system and its sub-systems.
Technical Paper

properties of Asbestos Reinforced Laminates at elevated temperatures

1960-01-01
600063
IF ROCKET OR MISSILE designers were asked to choose one specific property of engineering materials they would like to have improved, the largest percentage would undoubtedly select strength at high temperature. In addition to retaining strength at high temperatures, missile materials must be resistant to erosion and ablation. Missile structures must also be satisfactory when subjected to aerodynamic and acceleration loads, high stresses of vibration, and thermal shock. The need for low-density, easily fabricated, heat-resistant materials has resulted in a continuing search for more effective combinations of known materials, as well as the development of new materials. This paper discusses some interesting results obtained in studies of composite materials that might be used for rocket or missile construction.
Technical Paper

preliminary design considerations for the Structure of a Trisonic Transport

1960-01-01
600045
STRUCTURAL MATERIALS for Mach 3 jet transports pose difficult problems for the design engineer. Reasons for this problem are the incomplete information available on the many possible metals and the diversity of critical properties that are added by supersonic requirements. The material properties discussed in this paper include tensile strength, resistance to crack propagation, ease of fabrication, weldability, and thermal expansion. Cost factors are also considered. The structural configuration of the wing and fuselage is an example of the complexity of the material selection problem. The wing may be rigidity-critical, and the fuselage strength-critical; each requires diferent material properties to solve the problem.*
Technical Paper

prediction in new Metal Joining Processes

1960-01-01
600020
NEW WELDING processes are dropping costs while providing improvements in weld quality. This paper describes some of the more promising new developments in pressure and fusion welding and brazing. Included in the discussion are ultrasonic, high frequency resistance, foil seam, magnetic force, percussion, friction, and thermopressure welding and diffusion bonding. The description of adhesive bonding includes the development of glass or ceramic materials as structural adhesives.*
X