Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Predictions of Autoignition in a Spark-Ignition Engine Using Chemical Kinetics

A model developed to predict outoignition is used with data from a premixed charge, spark-ignition engine. A detailed chemical kinetics mechanism is used to predict the reactions which occur in the end-gas and lead to autoignition. Experimental pressure data from a CFR engine are used in the model to determine end-gas temperatures. The initial temperature at the time of spark must be increased above the bulk temperature for the predicted time of outoignition to agree with the observed time. A method for estimating the initial temperature based on an adiabotic compression from the time of intake valve closing is presented. The predictions of the model are examined over a range of engine speeds and fuel-air equivalence ratios. The magnitude by which the initial temperature must be increased above the bulk temperature decreases with increasing engine speed. This magnitude follows a trend which can be related to a heat transfer correlation.
Technical Paper

Parameters That Affect the Impact of Auxiliary Gas Injection in a DI Diesel Engine

The authors used auxiliary gas injection (AGI) to increase in-cylinder mixing during the latter portion of combustion in a direct injection (DI) diesel engine in order to reduce soot emissions without affecting NOx. Experiments were conducted using various gas injection directions and compositions to explore the effect of these parameters. Simulations were employed to provide additional insight. AGI direction was found to have a profound impact on soot emissions. Researchers suggested that this was due to changes in the fuel spray-gas jet interaction with injection direction. Simulations supported this theory and suggested that the number of soot clouds affected by the gas jet may also be a factor. The oxygen content of the gas jet was also found to have an influence on emissions. Researchers found that, when the oxygen content of the gas jet was increased, soot emissions decreased. However, this was found to have a detrimental affect on NO.
Technical Paper

Measurement of Trace Metal Composition in Diesel Engine Particulate and its Potential for Determining Oil Consumption: ICPMS (Inductively Coupled Plasma Mass Spectrometer) and ATOFMS (Aerosol Time of Flight Mass Spectrometer) Measurements

Current regulations stipulate acceptable levels of particulate emissions based on the mass collected on filters obtained by sampling in diluted exhaust. Although precise, this gives us only aggregated information. If in addition to the mass based measurements, detailed chemical analysis of the particulate matter (PM) is performed, additional subtle information about the combustion process can be revealed. This paper reports the results of detailed chemical analysis of trace metal in the PM emitted from a single cylinder heavy-duty diesel engine. The trace metal concentrations are used as an indicator of oil consumption. Two techniques were used to make the trace metal concentration measurements. PM was captured on filters and trace metals were quantified with an Inductively Coupled Plasma Mass Spectrometer (ICPMS), and also an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to perform particle size and composition measurements in real time.
Technical Paper

Investigation of MicroFlow Machining Effects on Diesel Injector Spray Characteristics

An investigation of the effect of microflow machining on the spray characteristics of diesel injectors was undertaken. A collection of four VCO injector tips were tested prior to and after an abrasive flow process using a high viscosity media. The injector nozzles were tested on a spray fixture. Rate of injection measurements and high-speed digital images were used for the quantification of the air entrainment rate. Comparisons of the spray characteristics and A/F ratios were made for conditions of before and after the abrasive flow process. Results showed a significant decrease in the injection-to-injection variability and improvement of the spray symmetry. A link between the quantity of air entrained and potential differences in spray plume internal chemical composition and temperature is proposed via equilibrium calculations.
Technical Paper

Effects of Oxygen Enhancement on the Emissions from a DI Diesel via Manipulation of Fuels and Combustion Chamber Gas Composition

Oxygen enhancement in a direct injection (DI) diesel engine was studied to investigate the potential for particulate matter and NOx emissions control. The local oxygen concentration within the fuel plume was modified by oxygen enrichment of the intake air and by oxygenating the base fuel with 20% methyl t-butyl ether (MTBE). The study collected overall engine performance and engine-out emissions data as well as in-cylinder two-color measurements at 25% and 75% loads over a range of injection timings. The study found oxygen enhancement, whether it be from intake air enrichment or via oxygenated fuels, reduces particulate matter, the effectiveness depending on the local concentration of oxygen in the fuel plume. Since NOx emissions depend strongly on the temperature and oxygen concentration throughout the bulk cylinder gas, the global thermal and dilution effects from oxygen enrichment were greater than that from operation on oxygenated fuel.
Technical Paper

Effect of Injection Timing on Detailed Chemical Composition and Particulate Size Distributions of Diesel Exhaust

An experimental study was carried out to investigate the effects of fuel injection timing on detailed chemical composition and size distributions of diesel particulate matter (PM) and regulated gaseous emissions in a modern heavy-duty D.I. diesel engine. These measurements were made for two different diesel fuels: No. 2 diesel (Fuel A) and ultra low sulfur diesel (Fuel B). A single-cylinder 2.3-liter D.I. diesel engine equipped with an electronically controlled unit injection system was used in the experiments. PM measurements were made with an enhanced full-dilution tunnel system at the Engine Research Center (ERC) of the University of Wisconsin-Madison (UW-Madison) [1, 2]. The engine was run under 2 selected modes (25% and 75% loads at 1200 rpm) of the California Air Resources Board (CARB) 8-mode test cycle.
Technical Paper

Effect of Fuel Composition on Combustion and Detailed Chemical/Physical Characteristics of Diesel Exhaust

An experimental study was performed to investigate the effect of fuel composition on combustion, gaseous emissions, and detailed chemical composition and size distributions of diesel particulate matter (PM) in a modern heavy-duty diesel engine with the use of the enhanced full-dilution tunnel system of the Engine Research Center (ERC) of the UW-Madison. Detailed description of this system can be found in our previous reports [1,2]. The experiments were carried out on a single-cylinder 2.3-liter D.I. diesel engine equipped with an electronically controlled unit injection system. The operating conditions of the engine followed the California Air Resources Board (CARB) 8-mode test cycle. The fuels used in the current study include baseline No. 2 diesel (Fuel A: sulfur content = 352 ppm), ultra low sulfur diesel (Fuel B: sulfur content = 14 ppm), and Fisher-Tropsch (F-T) diesel (sulfur content = 0 ppm).
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Determination of Diesel Injector Nozzle Characteristics Using Two-Color Optical Pyrometry

An investigation of several diesel injector nozzles that produced different engine emissions performance was performed. The nozzle styles used were two VCO type nozzles that were manufactured using two different techniques, and two mini-sac nozzles that provided comparison. Fired experiments were conducted on a Detroit Diesel Series 50 engine. Optical access was obtained by substituting a sapphire window for one exhaust valve. Under high speed, high load, retarded injection timing conditions, it was discovered that each nozzle produced different specific soot and NOx emissions. High-speed film images were obtained. It was discovered that the temperature and KL factor results from the 2-color optical pyrometry showed significant differences between the nozzles. The authors propose the possibility that differences in air entrainment, caused by potential differences in CD due to surface finish, may contribute to the variance in emissions performance.
Technical Paper

Compression-Ignited Homogeneous Charge Combustion

Experimentally obtained energy release results, a semi-empirical ignition model, and an empirical energy release equation developed during this research were used to evaluate the combustion of compression-ignited homogeneous mixtures of fuel, air, and exhaust products in a CFR engine. A systematic study was carried out to evaluate the response of compression-ignited homogeneous charge (CIHC) combustion to changes in operating parameters with emphasis being placed on the phenomena involved rather than the detailed chemical kinetics. This systematic study revealed that the response of the combustion process to changes in operating parameters can be explained in terms of known chemical kinetics, and that through the proper use of temperature and species concentrations the oxidation kinetics of hydrocarbon fuels can be sufficiently controlled to allow an engine to be operated in a compression-ignited homogeneous charge combustion mode.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.