Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 25322
Journal Article

“Sticky” Lining – the Phenomena, Mechanism and Prevention

2008-04-14
2008-01-0819
An unique bonding mechanism was studied after several instances, where the linings stuck to the brake drums on transit buses, were reported. Evidences suggested that the linings were “glued” to the brake drums surface after wear debris (dust) was turned into “adhesive paste” through complicated thermal and chemical changes. Factors such as the friction materials, environment and service conditions, which could activate and deactivate the lining bonding, were observed and discussed. The prevention measures are proposed.
Technical Paper

“Smart sensing” of Oil Degradation and Oil Level Measurements in Gasoline Engines

2000-03-06
2000-01-1366
Proper lubrication of moving parts is a critical factor in internal combustion engine performance and longevity. Determination of ideal lubricant change intervals is a prerequisite to ensuring maximum engine efficiency and useful life. When oil change intervals are pushed too far, increased engine wear and even engine damage can result. On the other hand, premature oil changes are inconvenient, add to vehicle maintenance cost, and result in wasted natural resources. In order to determine the appropriate oil change interval, we have developed an oil condition sensor that measures the electrical properties of engine oil, and correlates these electrical properties to the physical and chemical properties of oil. This paper provides a brief background discussion of the oil degradation process, followed by a description of the sensor operational principles and the correlation of the sensor output with physical and chemical engine oil properties.
Technical Paper

“DELRIN” ACETAL RESIN —a new engineering material

1959-01-01
590033
“DELRIN” is a new thermoplastic which offers high strength, excellent thermal stability, good fatigue life, low creep, and excellent solvent resistance. This paper describes the physical and chemical properties of the material, and the range of possible uses. The material is easily fabricated into complex shapes by standard injection-molding techniques. Also, it can be easily joined to itself or to other materials. The authors think that the material offers advantages over metals in its good fric-tional properties, abrasion resistance, and corrosion resistance.
Technical Paper

“Cromard” Thin Wall Steel Liners and Hard Chrome Plated Liners for High Production Gasoline and Diesel Engines

1964-01-01
640361
This paper, confined to the application of hard chrome plated liners to high-speed four-stroke diesel and gasoline engines, illustrates the increase in their popularity in the United Kingdom, and the advanced production methods which make this economically possible. The need for balanced engine life has long been apparent and is even more important today, the growth of motor transport having outstripped repair facilities. Iron bore life has been surpassed by improvement in the life of other component parts in the modern diesel engine. The provision of hard chrome plated liners can restore the balance. Further development and turbocharging of diesel engines has shown the need for a bore material capable of preventing scuffing and galling at elevated temperatures. Hard chrome has already proved itself in four-stroke engines under these conditions.
Technical Paper

¼ Scale VehicleWake Pattern Analysis using Near-Wall PIV

2006-04-03
2006-01-1027
3-D Flow separations such as those that occur on the rear end of a vehicle have an impact on wall pressure distribution, hence on aerodynamic forces. The identification of these phenomena can be made through the analysis of skin friction patterns, which consist of the “footprints” of flow separations. These can be determined from qualitative and quantitative data obtained from near-wall PIV measurements. The wake flow of different configurations of a simplified 1/4 scale car model are analyzed. The influence of the slant angle and the Reynolds number on 3-D separated flow patterns and their induced pressure distribution is addressed, based on near-wall PIV, standard PIV and wall pressure measurements. This enables to understand how a topological change (the size or shape of a separation pattern) modifies the associated pressure distribution (therefore the drag coefficient). Finally, insights into instantaneous topology identification are presented.
Standard

xEV Labels to Assist First and Second Responders, and Others

2017-03-02
CURRENT
J3108_201703
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

pCBT: A New Material for High Performance Composites in Automotive Applications1

2004-10-26
2004-01-2698
Cyclic oligomers of butylene terephthalate (CBT™)† represent a new chemical route to semi-crystalline thermoplastic polybutylene terephthalate (PBT). The oligomers of interest melt completely at about 150°C to produce a low viscosity fluid that is ideal for wetting and dispersing fibrous fillers and reinforcements thereby enabling the development of composites that were previously not possible when working with high viscosity commercial PBT. Introduction of catalyst to undiluted molten cyclic oligomer leads to rapid ring opening polymerization and the formation of high molecular weight thermoplastic PBT without the generation of volatile organic compounds. The polymer resulting from this polymerization will be hereby referred to as pCBT. Treatment of cyclic oligomers in this fashion results in pCBT thermoplastic resin with a high melting point (230°C) and physical performance similar to that of other commercially available PBT resins.
Technical Paper

Zn-Ni Plating as a Cadmium Alternative

2007-09-17
2007-01-3837
In a 2-year program sponsored by SJAC, an aqueous electroplating process using alkaline Zn-Ni with trivalent chromium post treatment is under evaluation for high strength steel for aircraft application as an alternative to cadmium. Commercial Zn-15%Ni rack/barrel plating solutions are basis for plating aircraft parts or fasteners. Brightener was reduced from the original formula to form porous plating that enables bake-out of hydrogen to avoid hydrogen embrittlement condition. Properties of the deposit, such as appearance, adhesion, un-scribed corrosion resistance, and galvanic corrosion resistance in contact with Al alloy, were evaluated. Coefficient of friction was compared with Cd plating by torque-tension measurements. Evaluation of the plating for scribed corrosion resistance, primer adhesion, etc. will continue in FY2007.
Technical Paper

Zinc-Magnesium-Aluminium (ZM)-HDG-Coated Steel Sheet for Structural Parts to Outer Panels

2017-03-28
2017-01-0507
Zinc-coatings with a substantial Magnesium content have been in use for over 30 years by now. Unlike the well-established Zn-Al-Mg coatings originating from Japan which have significant higher alloying contents applied mainly for building applications, this Zinc Magnesium Aluminum coating (ZM) is also specifically designed to meet the requirements of car manufacturers. The ZM coating introduced by voestalpine, corrender, is in the upper range of ZM-alloying compositions, which was set by VDA (German Association of the Automotive Industry) and SAE to be within 1.0 to 2.0 wt. % Mg and 1.0 to 3.0 wt. % Al. The properties of these “European” Zinc-Magnesium coatings are well comparable within this range. Compared to GI and GA ZM coatings exhibit significant advantages in the press shops with its excellent formability and reduced galling and powdering respectively which is a significant advantage for the forming of outer panels.
X