Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Study of Supercharged Gasoline HCCI Combustion by Using Spectroscopic Measurements and FT-IR Exhaust Gas Analysis

One issue of Homogeneous Charge Compression Ignition (HCCI) engines that should be addressed is to suppress rapid combustion in the high-load region. Supercharging the intake air so as to form a leaner mixture is one way of moderating HCCI combustion. However, the specific effect of supercharging on moderating HCCI combustion and the mechanism involved are not fully understood yet. Therefore, experiments were conducted in this study that were designed to moderate rapid combustion in a test HCCI engine by supercharging the air inducted into the cylinder. The engine was operated under high-load levels in a supercharged state in order to make clear the effect of supercharging on expanding the stable operating region in the high-load range. HCCI combustion was investigated under these conditions by making in-cylinder spectroscopic measurements and by analyzing the exhaust gas using Fourier transform infrared (FT-IR) spectroscopy.
Technical Paper

Influence of Engine Speed on Autoignition and Combustion Characteristics in a Supercharged HCCI Engine

Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. However, because HCCI engines lack a physical means of initiating ignition, it is difficult to control the ignition timing. Another issue of HCCI engines is that the combustion process causes the cylinder pressure to rise rapidly. The time scale is also important in HCCI combustion because ignition depends on the chemical reactions of the mixture. Therefore, we investigated the influence of the engine speed on autoignition and combustion characteristics in an HCCI engine. A four-stroke single-cylinder engine equipped with a mechanically driven supercharger was used in this study to examine HCCI combustion characteristics under different engine speeds and boost pressures.
Technical Paper

Improvement of Engine Performance With Lean Mixture Ignited By Diesel Fuel Injection and Internal Egr

The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by the direct diesel fuel injection. The internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the mixture temperature. The test engine was a 4-stroke, single- cylinder direct-injection diesel engine. The cooling system was forced-air cooling and displacement volume was about 211 (cm3). The compression ratio was about 19.9:1. The experiment was made under constant engine speed of 3000 (r/min). The boost pressure was maintained at 101.3 (kPa). Five values of mass flow rate of diesel fuel injection were selected from 0.060 (g/s) to 0.167 (g/s) and five levels of back pressure: 0), 26.7, 53.3, 80.0 and 106.6 (kPa) were selected for the experiment. The effect of internal EGR is varied by the back pressure level.
Journal Article

Effect of Streamer Discharge Assist on Combustion in a Supercharged HCCI Engine

Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest in recent years as a clean, high-efficiency combustion system. However, it is difficult to control the ignition timing in HCCI engines because they lack a physical means of inducing ignition. Another issue of HCCI engines is their narrow operating range because of misfiring that occurs at low loads and abnormal combustion at high loads. As a possible solution to these issues, this study focused on the application of a streamer discharge in the form of non-equilibrium plasma as a technique for assisting HCCI combustion. Experiments were conducted with a four-stroke single-cylinder engine fitted with an ignition electrode in the combustion chamber. A streamer discharge was continuously generated in the cylinder during a 720-degree interval from the intake stroke to the exhaust stroke.
Technical Paper

An Analysis of Conditions Producing Two-Stage Main Combustion Heat Release in a Supercharged HCCI Engine using a Gaseous Fuel Blend

In this study, a detailed analysis was made of supercharged HCCI combustion using a two-component fuel blend of dimethyl ether (DME), which has attracted interest as a potential alternative fuel, and methane. The quantity of fuel injected and boost pressure were varied to investigate the equivalence ratio and operating region conducive to optimal HCCI combustion. The results revealed that varying the boost pressure according to the engine load and applying a suitable equivalence ratio induced two-stage main combustion over a wide load range, making it possible to avoid excessively rapid combustion.