Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 32422
Technical Paper

“Understanding Diesel Engine Lubrication at Low Temperature”

1990-10-01
902177
Oil pumpability in passenger car gasoline engines was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. Oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at -18°C (0°F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier had better performance than a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance.
Technical Paper

“The Influence of Idle, Drive Cycle and Accessories on the Fuel Economy of Urban Hybrid Electric Buses - Chassis Dynamometer Tests”

2003-11-10
2003-01-3438
Fuel economy can be part of a business case for a fleet making the decision to buy new HD hybrid drivetrain technologies. Chassis dynamometer tests using SAE Recommended Practice J2711 on a bus equipped with an Allison EP SYSTEM ™ hybrid system and operated on standard bus driving cycles have produced impressive gains of over 60%. Preliminary urban bus field tests, on the other hand, have shown lower fuel economy gains. The difference can be attributed, in part, to the use of accessories - most importantly air conditioning - which are parasitic loads on the vehicle. In this paper the characteristics of driving cycles are studied to determine those factors which have the strongest influence on fuel economy for hybrids. The data show that the number of stopping events in a route or cycle is a strong influence as is the average vehicle speed. Energy analysis will show the relationship of fuel economy benefit and battery energy within a driving cycle.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

“Seizure-Delay” Method for Determining the Seizure Protection of EP Lubricants

1939-01-01
390146
IT does not yet seem to be recognized fully that it is the local temperature at the surface of contact and not the local specific pressure that chiefly determines the occurrence of seizure under extreme-pressure-lubrication conditions. This local temperature is the result of the temperature level of the parts lubricated, considered as a whole (“bulk” temperature) and of a superimposed instantaneous temperature rise (temperature “flash”) which is localized in the surface of contact. It appears typical for extreme-pressure-lubrication conditions, as met in gear practice, that the temperature flash is much higher than the bulk temperature. With existing conventional test methods for the determination of the protection against seizure afforded by EP lubricants, a considerable rise of the bulk temperature mostly occurs; as it cannot be controlled sufficiently; thus, leaving an unknown margin for the temperature flash, it renders impossible a reliable determination.
Technical Paper

“Second-Generation” SAE 5W-30 Passenger Car Engine Oils

1986-10-01
861515
High performance lubricant additive systems have been developed to formulate SAE 5W-30 passenger car engine oils which meet current and anticipated requirements of the North American original equipment manufacturers. The trend in North America is to recommend SAE 5W-30 oils that not only meet the API SF requirements for gasoline engines (“first-generation” oils), but also meet the stringent API CC requirement for light duty diesel engines (“second-generation” oils). Furthermore, the engine builders have issued “world specifications” for motor oils which incorporate additional “second-generation” SAE 5W-30 characteristics, such as enhanced API SF limits, improved fuel efficiency, an increased margin of bearing protection, and lower finished-oil phosphorus levels. The additive systems described herein exceed API SF and CC requirements as well as “second-generation” performance hurdles.
Technical Paper

“Pedestrian in the Loop”: An Approach Using Augmented Reality

2018-04-03
2018-01-1053
A large number of testing procedures have been developed to ensure vehicle safety in common and extreme driving situations. However, these conventional testing procedures are insufficient for testing autonomous vehicles. They have to handle unexpected scenarios with the same or less risk a human driver would take. Currently, safety related systems are not adequately tested, e.g. in collision avoidance scenarios with pedestrians. Examples are the change of pedestrian behaviour caused by interaction, environmental influences and personal aspects, which cannot be tested in real environments. It is proposed to use augmented reality techniques. This method can be seen as a new (Augmented) Pedestrian in the Loop testing procedure.
Technical Paper

“POSSIBILITIES IN THE FIELD OF DRY LUBRICANTS”

1958-01-01
580278
Research information on solid lubricants has been compiled for consideration in the possible use of such materials in aircraft electrical equipment. Solid lubricants are capable of lubricating at the maximum temperatures (600° F) for aircraft electrical equipment. Many solids that adhere well to metals may be useful lubricants; those with layer-lattice structure usually give low friction. Solid lubricants are most commonly used as bonded films but the use of fluid carriers and surface reaction products have considerable merit.
Technical Paper

“Hot Tube Test”-Analysis of Lubricant Effect on Diesel Engine Scuffing

1984-02-01
840262
To prevent engine scuffing in the field a new laboratory test called the Hot Tube Test has been established in order to evaluate the high temperature stability of diesel engine oils. In a strip mining application field test using 47 bulldozers powered by the same engine type, half of the engines suffered from piston scuffing failures when operated on a variety of commercially available API CD quality SAE 30 Grade engine oils. All the field test oils have been investigated using the Hot Tube Test, and an analysis of the results indicates that it would be possible to accurately predict scuffing failures by this test method. Furthermore, the reliability of this analysis has been verified by bench engine testing on reference oils. The reasons why the Hot Tube Test predicts the anti-scuffing performance of engine oils are discussed.
Technical Paper

“Cromard” Thin Wall Steel Liners and Hard Chrome Plated Liners for High Production Gasoline and Diesel Engines

1964-01-01
640361
This paper, confined to the application of hard chrome plated liners to high-speed four-stroke diesel and gasoline engines, illustrates the increase in their popularity in the United Kingdom, and the advanced production methods which make this economically possible. The need for balanced engine life has long been apparent and is even more important today, the growth of motor transport having outstripped repair facilities. Iron bore life has been surpassed by improvement in the life of other component parts in the modern diesel engine. The provision of hard chrome plated liners can restore the balance. Further development and turbocharging of diesel engines has shown the need for a bore material capable of preventing scuffing and galling at elevated temperatures. Hard chrome has already proved itself in four-stroke engines under these conditions.
Technical Paper

“Aluminium Hot Forming: - Opportunities and Challenges in Automotive Light Weighting”

2023-05-25
2023-28-1304
In today’s Automotive world, there is NO need to advocate “Light weighting”. Government policies for carbon footprint reduction combined with high safety standards are driving OEMs to adopt advanced manufacturing technologies. Steel hot forming is selected as most preferred way to reduce weight as it is easy to adopt and commercially known. It had many advantages compare to conventional cold stamping of standard and high tensile steel. The process consists of heating blank to nearly 1000 °C and quenching it in tool to for martensitic structure. Higher strength up to 2000 MPa can be achieved by this process. There are many examples where part weight is reduced by 15 to 20 % by this method. But Steel hot forming has limitation as specific density of steel is still high. Thus, there is limitation to its weight reduction capability. For further reduction, OEMs have started exploring Aluminium hot forming.
Technical Paper

“All Electric” Controls and Accessories for Ground Vehicle Gas Turbine Propulsion Systems

1986-02-01
860238
This paper discusses the use of electromechanical devices as the kinematic portions of a microprocessor based gas turbine control system. Specific applications are: 1. An electric motor driven, positive displacement pump, which provides metered high pressure fuel to the distribution manifold. Fuel metering to be provided by varying the motor angular velocity. 2. An electric motor driven lube oil pump. 3. Electromechnical actuators for motion and control of compressor and power turbine variable geometry. 4. A starter/generator integral with the gas generator. Topics covered include: Comparison to conventional hydro-mechanical systems. Response characteristics of the fuel pump and actuator systems. Brushless D.C. motor characteristics. Power electronics requirements for brushless D.C. motors. Control electronics interface with brushless D.C. motor systems. Reliability and maintainability issues. Diagnostic/prognostic enhancements.
Technical Paper

“A Study on Simulated Down-hill Brake Test Method for Motorcycles”

1987-11-08
871184
As a part of testing the braking performance of motorcycles, the method designed for evaluating the very changes caused in brake characteristics due to heat fade has been recently receiving the close attention of ISO and ECE. With the cooperation of the members of the Motorcycle Brake Subcommittee of Japan Automobile Manufacturers Association we measured temperature changes in the brakes and braking force distribution in motorcycles being driven downhill, based on which we find simple and highly reliable simulation test methods on a flat test course. As for test method, we found the STOP method of repeated starting and stopping more suitable to motorcycles than the SNUB, method of making non-stop running. For both methods we also found test conditions offering the highest correlation to actual down-hill driving.
Technical Paper

‘Motoring Which?’ — Eighteen Years of Human Factors in Comparative Car Testing — An Historical Review

1980-02-01
800332
In 1961 the Consumers’ Association in Britain set up a car test unit, and in 1962 the first car test reports were published. These later became the ‘Motoring Which?’ quarterly supplement to ‘Which?’ magazine. The methods and general sequence of the CA car testing procedure are first outlined. The Human Factors contribution to this testing programme is then described. The contribution broadly takes two forms. First, human factors reference data and guidance are provided to assist with the planning and interpretation of the objective measurement programme run by the test unit. Second, an extensive Human Factors Questionnaire (HFQ) programme is organised, and the results are reported, quarterly for every group of test cars. The initial planning of the Human Factors contribution is described; then the essential features of the HFQ programme, and its successive stages of development over the years to the current form with computerised analysis and output are reviewed.
Journal Article

μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters

2022-01-18
Abstract An investigation into the pre-ashing of new gasoline particulate filters (GPFs) has demonstrated that the filtration efficiency of such filters can be improved by up to 30% (absolute efficiency improvement) when preconditioned using ash derived from a fuel-borne catalyst (FBC) additive. The additive is typically used in diesel applications to enable diesel particulate filter (DPF) regeneration and can be added directly into the fuel tank of the vehicle. This novel result was compared with ash derived from lube oil componentry, which has previously been shown to improve filtration efficiency in GPFs. The lube oil-derived ash utilized in this work improved the filtration efficiency of the GPF by −30%, comparable to the ash derived from the FBC additive.
X