Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 23495
Technical Paper

“Walking on Automotive Waste? - Plastic Recycling Opportunities for Waste Automotive Materials in the Footwear Industry Sector”

1998-02-23
981162
This paper demonstrates the possibilities of using Automotive waste plastic material from “end of life” vehicles (ELVs), in the Footwear Industry to manufacture shoe components. The study establishes the sustainability of the flow of ELVs, from the European Car Parc and identifies and estimates the quantity of plastic materials potentially available for recycling from ELVs. Four potential materials, Acrylonitrile/butadiene/styrene (ABS), Polypropylene (PP), Polypropylene/ethylene/propylene/diene (PP/EPDM) and Polyamide (PA), were identified and three materials (PP, PP/EPDM and ABS) were reprocessed from ELV components and evaluated by the Footwear Industry. As a result, ABS was recommended as an economically, suitable replacement for HIPS, the current material used for manufacturing shoe heel components.
Technical Paper

“Virtual Engine/Powertrain/Vehicle” Simulation Tool Solves Complex Interacting System Issues

2003-03-03
2003-01-0372
An integrated simulation tool has been developed, which is applicable to a wide range of design issues. A key feature introduced for the first time by this new tool is that it is truly a single code, with identical handling of engine, powertrain, vehicle, hydraulics, electrical, thermal and control elements. Further, it contains multiple levels of engine models, so that the user can select the appropriate level for the time scale of the problem (e.g. real-time operation). One possible example of such a combined simulation is the present study of engine block vibration in the mounts. The simulation involved a fully coupled model of performance, thermodynamics and combustion, with the dynamics of the cranktrain, engine block and the driveline. It demonstrated the effect of combustion irregularity on engine shaking in the mounts.
Technical Paper

“Prediction of In-Cylinder Pressure, Temperature, and Loads Related to the Crank Slider Mechanism of I.C. Engines: A Computational Model”

2003-03-03
2003-01-0728
This paper describes the initial works related to the study of Internal Combustion Engines, as an object of mechanical design, at the Universidad Tecnológica de Pereira. It is reported a concise, complete methodology for simple model of internal combustion engine. The emphasis of the paper is placed on the use of the in-cylinder parameters (pressure and temperature) and inertial loads in the crank-slider mechanism to derive the loads that act on all the components of the crank-slider mechanism as well as the theoretical output torque for a given geometrical structure and inertial properties. These loads can then be used to estimate the preliminary dimensions of engine components in the initial stage of engine development. To obtain the pressure and temperature inside the cylinder, under different operation parameters, such as air fuel ratio and spark angle advance, a Zero dimensional model is applied. The heat transfer from the cylinder and friction are not taken into account.
Technical Paper

“POSSIBILITIES IN THE FIELD OF DRY LUBRICANTS”

1958-01-01
580278
Research information on solid lubricants has been compiled for consideration in the possible use of such materials in aircraft electrical equipment. Solid lubricants are capable of lubricating at the maximum temperatures (600° F) for aircraft electrical equipment. Many solids that adhere well to metals may be useful lubricants; those with layer-lattice structure usually give low friction. Solid lubricants are most commonly used as bonded films but the use of fluid carriers and surface reaction products have considerable merit.
Technical Paper

“One-Side Aluminized Steel Sheet” Development and Properties of a New Anti-Corrosion Material

1983-02-01
830519
Nisshin Steel Co., Ltd. has developed a new process for the production of a “one-side aluminized steel sheet”. The process utilizes a double layer one-side “stop-off” coating to prevent the molten Al from adhering to the steel surface. The “Stop-off” coating is removed by simple mechanical brushing after hot dipping. The characteristics of this product by above mentioned process are: 1) The steel side was as clean as a conventional cold rolled surface and showed no trace of the “stop-off” layer. Thereby, phosphating and ED painting were performed. 2) In the salt spray test data was obtained from zinc and Al coated steel surfaces; the coatings on both surfaces being of equal thickness.
Technical Paper

“Next Generation” Means for Detecting Squeaks and Rattles in Instrument Panels

1997-05-20
972061
Engineers doing squeak and rattle testing of instrument panels (IP's) have successfully used large electrodynamic vibration systems to identify sources of squeaks and rattles (S&R's). Their successes led to demands to test more IP's, i.e., to increase throughput of IP's to reflect the many design, material, and/or manufacturing process changes that occur, and to do so at any stage of the development, production, or QA process. What is needed is a radically different and portable way to find S&R's in a fraction of the time and at lower capital cost without compromising S&R detection results.
Technical Paper

“Metallic Core Technology”…and the Production of One Piece, Hollow Composite Components Which Have Complex Internal Geometry

1992-02-01
920507
Engineers have long been restricted in designing and manufacturing one piece, hollow composite components with complex internal geometry. Complex core pulls in the plastic tool, major concessions made in the actual component design or components joined from several pieces were the early means of producing such components. Progressive thinking led to the use of matrix materials such as sand, salt and wax, which provided a measure of flexibility in allowing designed-in undercut areas. These materials, however, lacked the capability to meet the required demands of dimensional accuracy and internal surface, as well as proving themselves unsuitable for high volume production. The concerns for repetitive dimensional accuracy, quality internal surface and high volume production capability has now been satisfied with the use of low melting temperature metal alloys.
Technical Paper

“Influence of Engine Variables on Exhaust Oxides of Nitrogen Concentrations from a Multi-Cylinder Engine”

1967-02-01
670482
The influence of engine variables on the concentration of oxides of nitrogen present in the exhaust of a multicylinder engine was studied. The concentrations of nitric oxide (NO) were measured with either a mass spectrometer or a non-dispersive infrared analyzer. The NO concentration was low for rich operation (deficient in oxygen) and increased with air-fuel ratio to a peak value at ratios slightly leaner than stoichiometric proportions. A further increase in air-fuel ratio resulted in reduced NO concentrations. Advanced spark timing, decreased manifold vacuum, increased coolant temperature and combustion chamber deposit buildup were also found to increase exhaust NO concentration. These results support either directly or indirectly the hypothesis that exhaust NO concentration is primarily a result of the peak combustion gas temperature and the available oxygen.
Technical Paper

“Fatigue Behavior of Sheet Steels for Automotive Industry”

1992-11-01
921439
Carbon and rephosphorized pre-strained sheet steels for cold drawing forming operations were studied and the tensile, high cycle fatigue and fatigue crack propagation properties were determined. The fatigue limit was found to be higher for 20% than for 1% pre-strained condition. Threshold stress intensity factors (▵Ků) of 5.29 MPa. m1/2 for rephosphorized steel and 7.07 MPa. m1/2 for carbon steel. Critical crack lenghts were calculated by ▵Ků and fatigue limit data using the Lukas-Klesnil short-crack criterion. Through fractographic analysis it was possible to determine the general behavior of tested materials near threshold.
Technical Paper

“Digital Prototype” Simulations to Achieve Vehicle Level NVH Targets in the Presence of Uncertainties

2001-04-30
2001-01-1529
“Digital Prototype” simulations have been used at DaimlerChrysler to achieve vehicle level NVH objectives. The effectiveness of these simulations to guide the design when faced with vehicle parameter uncertainties is discussed. These uncertainties include, but are not limited to, material properties, material gauges, damping, structural geometry, loads, boundary conditions and weld integrity. Manufacturing and assembly processes introduce variations in the nominal values of these parameters resulting in a scatter of vehicle level NVH simulation responses. An example of a high frequency NVH concern will be studied and modified to arrive at robust design guidance when faced with uncertainty. The validity of a “deterministic digital prototype” simulation model and its relevant role as a “trend predictor” rather than “absolute predictor” tool in guiding the design is also discussed.
Technical Paper

“Converticar” - The Roadable Helicopter

1998-09-28
985513
The Boeing Company in Mesa, Arizona, has been conducting a concept design study of a roadable helicopter called the “Converticar” to assess its feasibility. This is a twin-engine vehicle with twin retractable coaxial counter-rotating rotors. The purpose of the study is to describe a vehicle that carries four passengers in the equivalent of a luxury car that also can fly like a helicopter, and can be priced like a luxury car. To come near this cost goal, the production rate must be on the order of 500,000 units a year. At that rate there is no chance of training a comparable number of pilots each year. So the machine must fly and navigate autonomously, with the pilot just dialing in where he/she wants to go. Technologically, the concept appears to be feasible. Modern design processes, new materials, and improved manufacturing process should allow the Converticar to be built at the prescribed rate when the proper infrastructure for manufacturing it is made available.
Technical Paper

“Catalytic Engine” NOx Reduction of Diesel Engines with New Concept Onboard Ammonia Synthesis System

1992-02-01
920469
Ammonia is one of the most useful compounds that react with NOx selectively on a catalyst, such as V2O5-TiO2, under oxygen containing exhaust gas. However ammonia cannot be stored because of its toxicity for the small power generator in populated areas or for the diesel vehicles. A new concept for NOx reduction in diesel engine using ammonia is introduced. This system is constructed from the hydrogen generator by fuel reformer, the ammonia synthesizer, SCR catalyst for NOx reduction and the gas injection system of reformed gas into the cylinder. Experimental results show that, the SCR catalyst provides a very high rate of NOx reduction, reformed gas injection into cylinder is very effective for particulate reduction. WHEN CONSIDERING INTERNAL COMBUSTION ENGINES of the 1990's the question of how to harmonize the engine with the natural environments is one of the greatest problems. The internal combustion engine changes a substance into energy via its explosive combustion.
Technical Paper

“Bump Test” of Wet Friction Materials: Modeling and Experiments

2001-03-05
2001-01-1154
In one of the fatigue tests for wet friction materials, “bump test”, an inertia-type rig equipped with a multi-disk assembly is used. One of the steel disks in the assembly has radial bumps for the purpose of creating high local contact pressure and high temperature. Due to the severe contact conditions, a comparative testing for different friction materials can be conducted within a relatively small number of cycles. In the paper, a design of a “bump” assembly used for automotive wet friction materials is described. Based on both experimental tests and advanced contact modeling, non-uniform contact pressure generated by the bumps and resulting temperature are estimated. The computational model is used then to study the influence of the modulus of elasticity of the friction material and reaction plate thickness on the contact conditions. The bump fatigue tests lead ultimately to material failure.
Technical Paper

“Buckling” Failure Assessment for Long Cylinders

1976-02-01
760641
A new method for the structural study of long hydraulic cylinders has been developed. The rational analysis, taking cognizance of most known conditions and disturbances, is capable of an iterative type solution by computer. Some examples of its use are given, illustrating the effects of stroke length and mounting position on stresses, deflections, internal bearing loads, and critical axial load.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

‘Almost’ Real-Time Diagnosis and Correction of Manufacturing Scrap Using an Expert System

1987-04-07
870905
This paper describes preliminary findings on an expert system that uses both operator and transducer inputs in ‘almost’ real-time to diagnose scrap type and recommend corrective action to reduce/eliminate further production of this scrap type. During the development of the expert system, equal consideration was given to hardware installation and debugging; system architecture, logic, and triggering; and knowledge acquisition. The system is applied to a specific manufacturing process; however, the ideas are applicable to a wide range of problems in the production environment.
X