Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 41895
Technical Paper

“Walking on Automotive Waste? - Plastic Recycling Opportunities for Waste Automotive Materials in the Footwear Industry Sector”

1998-02-23
981162
This paper demonstrates the possibilities of using Automotive waste plastic material from “end of life” vehicles (ELVs), in the Footwear Industry to manufacture shoe components. The study establishes the sustainability of the flow of ELVs, from the European Car Parc and identifies and estimates the quantity of plastic materials potentially available for recycling from ELVs. Four potential materials, Acrylonitrile/butadiene/styrene (ABS), Polypropylene (PP), Polypropylene/ethylene/propylene/diene (PP/EPDM) and Polyamide (PA), were identified and three materials (PP, PP/EPDM and ABS) were reprocessed from ELV components and evaluated by the Footwear Industry. As a result, ABS was recommended as an economically, suitable replacement for HIPS, the current material used for manufacturing shoe heel components.
Technical Paper

“U” Bolt Torque Influence over Leaf Springs

2014-05-07
2014-36-0024
”U” bolts are fixing elements and they are used to clamp an elastic joint. From the past, they still looking as an old design and unfortunately, suspension engineers are not specialists in fasteners and elastic joints. That is why we will show important assumptions and concepts to design and specifications this clamp element “U” bolt and its influence over leaf-springs. Currently, “U” bolt is used to clamp an elastic or elastic-plastic joint of heavy duty suspension, formed by leaf-spring, axle, spring pad, “U” bolt plate. This kind of suspension is typically used to trucks, buses and trailers. We are wondering, which one important assumption that an engineer must be careful when designs a new suspension changing from old designs to an updated technology. We provide a theoretical analysis and a FEA analysis to compare torque efficacy x leaf-spring reactions and what are effects this relationship can cause in a suspension.
Technical Paper

“RoHS” Compliant Chrome - Free Conversion Coating for Aerospace Manufacturing

2006-09-12
2006-01-3130
This paper presents, chemistry, test data and processing procedures on a non toxic and environmentally friendly chrome-free conversion coating alternative with the same level of adhesion and secondary corrosion resistance as that found in chrome containing conversion coating systems. Test data from military and independent sources will be presented on secondary coating adhesion, electrical conductivity, filiform and neutral salt-spray corrosion resistance as compared to chromate based systems .on magnesium, aluminum and zinc and their respective alloys. The European “RoSH” initiative will not allow for the presence of any hexavalent chromium on imported electrical components as of July first of 2006. Trivalent chromium based systems generate hexavalent chromium due to the oxidation of the trivalent chromium and as such will not be allowed.
Technical Paper

“POSSIBILITIES IN THE FIELD OF DRY LUBRICANTS”

1958-01-01
580278
Research information on solid lubricants has been compiled for consideration in the possible use of such materials in aircraft electrical equipment. Solid lubricants are capable of lubricating at the maximum temperatures (600° F) for aircraft electrical equipment. Many solids that adhere well to metals may be useful lubricants; those with layer-lattice structure usually give low friction. Solid lubricants are most commonly used as bonded films but the use of fluid carriers and surface reaction products have considerable merit.
Technical Paper

“One-Side Aluminized Steel Sheet” Development and Properties of a New Anti-Corrosion Material

1983-02-01
830519
Nisshin Steel Co., Ltd. has developed a new process for the production of a “one-side aluminized steel sheet”. The process utilizes a double layer one-side “stop-off” coating to prevent the molten Al from adhering to the steel surface. The “Stop-off” coating is removed by simple mechanical brushing after hot dipping. The characteristics of this product by above mentioned process are: 1) The steel side was as clean as a conventional cold rolled surface and showed no trace of the “stop-off” layer. Thereby, phosphating and ED painting were performed. 2) In the salt spray test data was obtained from zinc and Al coated steel surfaces; the coatings on both surfaces being of equal thickness.
Technical Paper

“Next Generation” Means for Detecting Squeaks and Rattles in Instrument Panels

1997-05-20
972061
Engineers doing squeak and rattle testing of instrument panels (IP's) have successfully used large electrodynamic vibration systems to identify sources of squeaks and rattles (S&R's). Their successes led to demands to test more IP's, i.e., to increase throughput of IP's to reflect the many design, material, and/or manufacturing process changes that occur, and to do so at any stage of the development, production, or QA process. What is needed is a radically different and portable way to find S&R's in a fraction of the time and at lower capital cost without compromising S&R detection results.
Technical Paper

“Motion in FEA”: An Innovative Approach for More Physical and More Accurate Vehicle Dynamics Simulation

2012-04-16
2012-01-0762
Vehicle dynamics is a discipline of mechanical engineering that benefited of significant improvements thanks to the progress of computational engineering. Vehicle dynamics engineers are using CAE for the development of a vehicle with MBS and FEA. The concurrent use of these two technologies is a standard in the automotive industry. However the current simulation process is not fully efficient because local geometrical and material nonlinearities are not accurately modeled in classical MBS software. This paper introduces a methodology for vehicle dynamics simulation integrating MBS capabilities in one single nonlinear FEA environment enabling an accurate modeling of nonlinearity in vehicles.
Technical Paper

“Metallic Core Technology”…and the Production of One Piece, Hollow Composite Components Which Have Complex Internal Geometry

1992-02-01
920507
Engineers have long been restricted in designing and manufacturing one piece, hollow composite components with complex internal geometry. Complex core pulls in the plastic tool, major concessions made in the actual component design or components joined from several pieces were the early means of producing such components. Progressive thinking led to the use of matrix materials such as sand, salt and wax, which provided a measure of flexibility in allowing designed-in undercut areas. These materials, however, lacked the capability to meet the required demands of dimensional accuracy and internal surface, as well as proving themselves unsuitable for high volume production. The concerns for repetitive dimensional accuracy, quality internal surface and high volume production capability has now been satisfied with the use of low melting temperature metal alloys.
Technical Paper

“Impact of Design Principles on End-of-Life and Recycling”

2024-01-16
2024-26-0163
Automotive industry is a major contributor to global carbon dioxide (CO2) emissions and waste generation. Not only do vehicles produce emissions during usage, but they also generate emissions during production phase and end of life disposal. There is an urgent need to address sustainability and circularity issues in this sector. This paper explores how circularity and CO2 reduction principles can be applied to design and production of automotive parts, with the aim of reducing the environmental impact of these components throughout their life cycle. Also, this paper highlights the impact of design principles on End-of-Life Management of vehicles. As Design decisions of Component impacts up to 80% of emissions [1], it is important to focus on this phase for major contribution in reduction of emissions.
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

“Fatigue Behavior of Sheet Steels for Automotive Industry”

1992-11-01
921439
Carbon and rephosphorized pre-strained sheet steels for cold drawing forming operations were studied and the tensile, high cycle fatigue and fatigue crack propagation properties were determined. The fatigue limit was found to be higher for 20% than for 1% pre-strained condition. Threshold stress intensity factors (▵Ků) of 5.29 MPa. m1/2 for rephosphorized steel and 7.07 MPa. m1/2 for carbon steel. Critical crack lenghts were calculated by ▵Ků and fatigue limit data using the Lukas-Klesnil short-crack criterion. Through fractographic analysis it was possible to determine the general behavior of tested materials near threshold.
Technical Paper

“Digital Prototype” Simulations to Achieve Vehicle Level NVH Targets in the Presence of Uncertainties

2001-04-30
2001-01-1529
“Digital Prototype” simulations have been used at DaimlerChrysler to achieve vehicle level NVH objectives. The effectiveness of these simulations to guide the design when faced with vehicle parameter uncertainties is discussed. These uncertainties include, but are not limited to, material properties, material gauges, damping, structural geometry, loads, boundary conditions and weld integrity. Manufacturing and assembly processes introduce variations in the nominal values of these parameters resulting in a scatter of vehicle level NVH simulation responses. An example of a high frequency NVH concern will be studied and modified to arrive at robust design guidance when faced with uncertainty. The validity of a “deterministic digital prototype” simulation model and its relevant role as a “trend predictor” rather than “absolute predictor” tool in guiding the design is also discussed.
Technical Paper

“Cromard” Thin Wall Steel Liners and Hard Chrome Plated Liners for High Production Gasoline and Diesel Engines

1964-01-01
640361
This paper, confined to the application of hard chrome plated liners to high-speed four-stroke diesel and gasoline engines, illustrates the increase in their popularity in the United Kingdom, and the advanced production methods which make this economically possible. The need for balanced engine life has long been apparent and is even more important today, the growth of motor transport having outstripped repair facilities. Iron bore life has been surpassed by improvement in the life of other component parts in the modern diesel engine. The provision of hard chrome plated liners can restore the balance. Further development and turbocharging of diesel engines has shown the need for a bore material capable of preventing scuffing and galling at elevated temperatures. Hard chrome has already proved itself in four-stroke engines under these conditions.
Technical Paper

“Converticar” - The Roadable Helicopter

1998-09-28
985513
The Boeing Company in Mesa, Arizona, has been conducting a concept design study of a roadable helicopter called the “Converticar” to assess its feasibility. This is a twin-engine vehicle with twin retractable coaxial counter-rotating rotors. The purpose of the study is to describe a vehicle that carries four passengers in the equivalent of a luxury car that also can fly like a helicopter, and can be priced like a luxury car. To come near this cost goal, the production rate must be on the order of 500,000 units a year. At that rate there is no chance of training a comparable number of pilots each year. So the machine must fly and navigate autonomously, with the pilot just dialing in where he/she wants to go. Technologically, the concept appears to be feasible. Modern design processes, new materials, and improved manufacturing process should allow the Converticar to be built at the prescribed rate when the proper infrastructure for manufacturing it is made available.
Technical Paper

“Bump Test” of Wet Friction Materials: Modeling and Experiments

2001-03-05
2001-01-1154
In one of the fatigue tests for wet friction materials, “bump test”, an inertia-type rig equipped with a multi-disk assembly is used. One of the steel disks in the assembly has radial bumps for the purpose of creating high local contact pressure and high temperature. Due to the severe contact conditions, a comparative testing for different friction materials can be conducted within a relatively small number of cycles. In the paper, a design of a “bump” assembly used for automotive wet friction materials is described. Based on both experimental tests and advanced contact modeling, non-uniform contact pressure generated by the bumps and resulting temperature are estimated. The computational model is used then to study the influence of the modulus of elasticity of the friction material and reaction plate thickness on the contact conditions. The bump fatigue tests lead ultimately to material failure.
Technical Paper

“Aluminium Hot Forming: - Opportunities and Challenges in Automotive Light Weighting”

2023-05-25
2023-28-1304
In today’s Automotive world, there is NO need to advocate “Light weighting”. Government policies for carbon footprint reduction combined with high safety standards are driving OEMs to adopt advanced manufacturing technologies. Steel hot forming is selected as most preferred way to reduce weight as it is easy to adopt and commercially known. It had many advantages compare to conventional cold stamping of standard and high tensile steel. The process consists of heating blank to nearly 1000 °C and quenching it in tool to for martensitic structure. Higher strength up to 2000 MPa can be achieved by this process. There are many examples where part weight is reduced by 15 to 20 % by this method. But Steel hot forming has limitation as specific density of steel is still high. Thus, there is limitation to its weight reduction capability. For further reduction, OEMs have started exploring Aluminium hot forming.
X