Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 50631
Technical Paper

“itron” Vacuum Fluorescent Display Dot Matrix Graphic Display with Characteristics

1980-02-01
800359
In recent years, with the development of information system products, the types of display devices utilized are becoming more sophisticated and complicated. Displays of earlier stages are now being replaced by 5×7 dot type displays which allow the display of functional symbols as well as alphanumerics. The dot type display is being developed into a dot matrix type as a more sophisticated product, in the latest stage. A great feature of the dot matrix type display is that it allows display not only of numerals, the alphabet, and other functional symbols but also of graphic features.
Technical Paper

“Zero Defects”, Statistically Considered

2000-09-11
2000-01-2605
The requirement of “zero defects” is rapidly finding its way as a “standard” of quality in numerous quarters. This phrase has great psychological appeal, and is often taken literally at all levels in an organization even though quality motivation may be the intention. It is common to believe that when zero defects are found in the sample, this must be the case for “all the rest” as well. In this paper the technical side of “zero defects” is examined. We look at the statistics of zero defects and show what is implied about lot or process quality when zero defects is the actual sample outcome. The focus is on attribute measurements and includes some special cases where a significant measurement error exists and cases where a Bayesian statistical analysis may be appropriate.
Technical Paper

“Walking on Automotive Waste? - Plastic Recycling Opportunities for Waste Automotive Materials in the Footwear Industry Sector”

1998-02-23
981162
This paper demonstrates the possibilities of using Automotive waste plastic material from “end of life” vehicles (ELVs), in the Footwear Industry to manufacture shoe components. The study establishes the sustainability of the flow of ELVs, from the European Car Parc and identifies and estimates the quantity of plastic materials potentially available for recycling from ELVs. Four potential materials, Acrylonitrile/butadiene/styrene (ABS), Polypropylene (PP), Polypropylene/ethylene/propylene/diene (PP/EPDM) and Polyamide (PA), were identified and three materials (PP, PP/EPDM and ABS) were reprocessed from ELV components and evaluated by the Footwear Industry. As a result, ABS was recommended as an economically, suitable replacement for HIPS, the current material used for manufacturing shoe heel components.
Technical Paper

“Understanding Diesel Engine Lubrication at Low Temperature”

1990-10-01
902177
Oil pumpability in passenger car gasoline engines was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. Oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at -18°C (0°F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier had better performance than a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance.
Technical Paper

“Trapless” Trap – A Catalytic Combustion System of Diesel Particulates Using Ceramic Foam

1983-02-01
830082
“Trapless” Trap, which makes possible the effective collecting of particulates in diesel exhaust gas and their simultaneous combustion has been developed by use of a ceramic foam in combination with catalysts containing copper salt. From a TEM photograph, it was observed that the particulate was rapidly oxidized by mobile copper ion, showing worm-eaten like spots. Screening of various base metal salts by TGA presented CUCl2-KCl-NH4VO3 and CuCl2-KCl-(NH4)6Mo7O24 as very active catalysts for diesel particulate oxidation. They had thermal stability up to 900°C when they were supported on titania. The results obtained by measuring the back pressure using 1.8L diesel engine suggest the above trap to be a self-cleaning trapless trap.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

“Taguchi Customer Loss Function” Based Functional Requirements

2018-04-03
2018-01-0586
Understanding customer expectations is critical to satisfying customers. Holding customer clinics is one approach to set winning targets for the engineering functional measures to drive customer satisfaction. In these clinics, customers are asked to operate and interact with vehicle systems or subsystems such as doors, lift gates, shifters, and seat adjusters, and then rate their experience. From this customer evaluation data, engineers can create customer loss or preference functions. These functions let engineers set appropriate targets by balancing risks and benefits. Statistical methods such as cumulative customer loss function are regularly applied for such analyses. In this paper, a new approach based on the Taguchi method is proposed and developed. It is referred to as Taguchi Customer Loss Function (TCLF).
Technical Paper

“TFC/IW in 1982”

1982-02-01
820301
TFC/IW, total fuel consumption divided by inertia weight is reported with other engineering variables for recent EPA data for industry passenger cars and truck. TFC/IW is used in comparisons between gasoline and diesel engines, 49 States and California, passenger cars and trucks. The California fuel economy penalty due to more stringent emissions standards is discussed. The relationship between TFC/IW and ton miles per gallon is shown. Special attention is focused on 4 cylinder gasoline powered vehicles in 49 States passenger car fleet. The use of TFC/IW to answer the question, ‘What Changed?’ when comparing the fuel economies of two fleets is described.
Technical Paper

“Symbiose”: Technology Developments for Bioregeneration in Space

1994-06-01
941348
Dedicated technology has been developed to support long-term biological experiments on-board spacecraft. These developments include a microgravity compatible tubular photo bioreactor for the cultivation of micro algae at very high biomass concentrations and with very high gas exchange rates, a microgravity compatible gas / liquid phase separator which also works as a pneumatic low shear-stress pump, a microgravity compatible dehumidifier, and a maltose separating reverse osmosis unit. Integration of these technologies into a partially closed artificial ecosystem form the foundation of the SYMBIOSE concept (System for Microgravity Bioregenerative Support of Experiments).
Technical Paper

“Seizure-Delay” Method for Determining the Seizure Protection of EP Lubricants

1939-01-01
390146
IT does not yet seem to be recognized fully that it is the local temperature at the surface of contact and not the local specific pressure that chiefly determines the occurrence of seizure under extreme-pressure-lubrication conditions. This local temperature is the result of the temperature level of the parts lubricated, considered as a whole (“bulk” temperature) and of a superimposed instantaneous temperature rise (temperature “flash”) which is localized in the surface of contact. It appears typical for extreme-pressure-lubrication conditions, as met in gear practice, that the temperature flash is much higher than the bulk temperature. With existing conventional test methods for the determination of the protection against seizure afforded by EP lubricants, a considerable rise of the bulk temperature mostly occurs; as it cannot be controlled sufficiently; thus, leaving an unknown margin for the temperature flash, it renders impossible a reliable determination.
Technical Paper

“Real-Time Estimation of Soot for a Wall Flow DPF Regeneration Management and an Efficient DOE for Model Calibration.”

2021-09-22
2021-26-0333
Estimation of soot deposited on a wall flow type DPF, is a vital information to ensure safe and efficient DPF management. Accuracy in determining mass of soot present inside the DPF ensures a correct regeneration management strategy in-terms of fuel efficiency and DPF safety considering soot overloading and too frequent regenerations. It also ensures an efficient detection of anomalies in the PM filtration mandated by the BSVI/EURO VI legislation as a part of On-board diagnostics. Classical approach of determining soot present inside DPF involves monitoring increase in pressure drop. Real time usage of such a model is limited by the inaccuracy of measuring pressure drop at low exhaust flows. Hence, contemporary engine controllers use pressure drop based models as a failsafe and estimate DPF soot loading by modelling soot release rate due to engine combustion and the rate at which it is oxidized.
Technical Paper

“Rds_on” Based OBD for Pre-Supply Fuel Pump Driver Modules

2017-01-10
2017-26-0348
In automotive electronics on-board diagnostics does the fault diagnosis and reporting. It provides the level of robustness required for the control electronics against various faults. The amount of diagnostic information available via on board diagnostics are depends on the type of vehicle. Pre-supply fuel pump is the component in the common rail hydraulic system. It pumps the fuel from the fuel tank to the inlet valve of the high pressure fuel pump. Electronic control unit synchronizes its operation with high pressure fuel pump. A dedicated driver module in the ECU controls the operation of pre-supply fuel pump. The driver module consist of an ASIC with internal voltage, current monitoring modules for the fault diagnosis and the pre-drivers to control external HS and LS power stages. The software part of the OBD programmed in the internal memory of the ASIC. The “Rds_on” of the power MOSFETs are used for the fault detection purpose.
Technical Paper

“Performance Emission Parameters Behavior of a DI Diesel Engine Using Al2O3 and TiO2 Nano Additive Biodiesel Blends”

2023-11-10
2023-28-0127
This study mainly focuses on the blending of Alumina and Titanium oxide nanoparticles (NP’s) in Spirulina biodiesel blends (SB20) to estimate the influence of engine (combustion, performance and emission) parameters of a diesel engine. The characterization of Al2O3 and TiO2 NP’s like SEM were reported. By using various fuel samples such as Diesel, SB20, SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO, the engine tests on the diesel engine were conducted at various load conditions. The BTE for SB20+80 ppm AO were enhanced by 12.35% and 8.4 % compared to the SB20 fuel and SB20+40 ppm AO fuel samples. The combustion parameters were improved for the NP’s as additives (Al2O3 and TiO2) fuels than the SB20 fuel sample because NP’s contain oxygen content. The parameters of engine exhaust emissions such as HC, CO and smoke are drastically diminished for the SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO fuels compared to the SB20 fuel.
Technical Paper

“Passenger Vehicle Petrol Consumption - Measurement in the Real World”

1800-01-01
871159
A survey of the in-service fuel consumption of passenger vehicles and derivatives in the Australian fleet was carried out in 1984-85. Seven hundred and four owners across Australia took part in the survey. Vehicle owners reported by questionnaire the amount of fuel used during four tank fills of normal operation, the distance travelled, and other details of the operating circumstances. The survey shows a clear downward trend in the fuel consumption of the Australian passenger fleet. The data also provides comparisons of actual fuel consumption obtained on the road, with laboratory derived values for fuel consumption. Vehicles in a sub-set of 40 were fitted with fuel flow meters during the survey and tested to Australian Standard 2077 for fuel consumption. The questionnaire method is shown to be a valid and accurate technique for determining in-service fuel consumption.
Technical Paper

“Optimization of Operational Parameters on Engine Performance and Emissions of a Diesel Engine Powered with Mimusops Elengi Methyl Ester with Doped TiO2 Nanoparticle with Varying Injection Pressure”

2022-12-23
2022-28-0574
The current research was aimed at determining the most effective way to use alternative renewable feedstock to power a diesel engine. Mimusops elengi, a new and novel biofuel was recognized for this current study, which is widely available in the south of India. The investigation was conducted on B20 volume basis (20% Mimusops elengi methyl ester blended with 80% diesel). Furthermore, it was recognized that when the performance characteristics were traded off, the emission magnitude has slightly higher. To address the diesel engine pollution, an oxygenated nano additive like titanium oxide was dissipated only with the fuel blend at distinct mass fractions of 25 parts per million (ppm) with differing injection pressures of 180 bar, 200 bar, 220 bar, and 240 bar. The tests were created using a statistical programme known as design of experiments, which is purely based on Taguchi and response surface methodology.
Technical Paper

“OptiVent” - A New Approach for Controlling Mass Air Flow and Combustion in Direct Injection SI-Engines

2013-04-08
2013-01-0592
Combustion concepts for future SI engines try to meet CO2-emission commitments and legislation all over the world. Where the Diesel engine has an advantage by principle, the efficiency of the SI engine has to be improved significantly, while of course the exhaust emissions must not become worse. An approach is to reduce the gas exchange losses using fully variable valve trains on the intake side of the combustion engine. OptiVent is a patented new way of controlling the mass air flow in the cylinder of a combustion engine using opening valves during the compression phase of a four stroke engine. This technology regards a wider range of variability on the valvetrain components of the engine especially for opening the valves more than one time during a cycle. On the other hand it is necessary to combine this technology with direct injection to avoid fuel losses in the exhaust system and raising the exhaust hydrocarbon emission of the engine.
Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

“Motion in FEA”: An Innovative Approach for More Physical and More Accurate Vehicle Dynamics Simulation

2012-04-16
2012-01-0762
Vehicle dynamics is a discipline of mechanical engineering that benefited of significant improvements thanks to the progress of computational engineering. Vehicle dynamics engineers are using CAE for the development of a vehicle with MBS and FEA. The concurrent use of these two technologies is a standard in the automotive industry. However the current simulation process is not fully efficient because local geometrical and material nonlinearities are not accurately modeled in classical MBS software. This paper introduces a methodology for vehicle dynamics simulation integrating MBS capabilities in one single nonlinear FEA environment enabling an accurate modeling of nonlinearity in vehicles.
X