Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 31356
Technical Paper

“Trapless” Trap – A Catalytic Combustion System of Diesel Particulates Using Ceramic Foam

1983-02-01
830082
“Trapless” Trap, which makes possible the effective collecting of particulates in diesel exhaust gas and their simultaneous combustion has been developed by use of a ceramic foam in combination with catalysts containing copper salt. From a TEM photograph, it was observed that the particulate was rapidly oxidized by mobile copper ion, showing worm-eaten like spots. Screening of various base metal salts by TGA presented CUCl2-KCl-NH4VO3 and CuCl2-KCl-(NH4)6Mo7O24 as very active catalysts for diesel particulate oxidation. They had thermal stability up to 900°C when they were supported on titania. The results obtained by measuring the back pressure using 1.8L diesel engine suggest the above trap to be a self-cleaning trapless trap.
Technical Paper

“The Producers” New Row-Crop Tractors From John Deere

1982-02-01
821062
A line of five new row-crop tractors is being introduced by John Deere with innovative features including a 15-speed full power shift transmission, a high capacity, highly-maneuverable full-time mechanical front-wheel drive and micro-processor controlled instrumentation. In addition, the tractors have increased power, improved fuel economy, greater hydraulic power, improved hitch sensing, improved operator controls, lower sound levels, and revised styling. This paper documents the design and development of these new John Deere row-crop tractors.
Technical Paper

“The Creation, Development and Implementation of a Lean Systems Course at Oakland University, Rochester, MI”

2005-04-11
2005-01-1798
Countless articles and publications3,4,5 have documented and proven the efficacy, benefits and value of operating within a lean system. Furthermore, there exists common agreement amongst leading organizations successfully implementing a lean system that in order to do so it must take into consideration the entire enterprise, that is, from supplier to customer and everything in between6. One of the core issues this paper addresses is when the optimal time is to train and educate the people who currently have, or will have, influence over the ‘enterprise’.
Technical Paper

“Targeting Consumer Needs in the Perfect Storm: Changing the Automotive Lifestyle”

2008-10-20
2008-21-0038
The intersection of changing lifestyles and evolving transportation needs finds smart USA well positioned for launch in 2008 during one of the most competitive periods in U.S. automotive history. In a zero sum market with new global entrants competing for single points of share, where quality levels have been redefined and fractions of points separate the best from the challengers, lifestyle awareness, innovation and product positioning become the differentiators. Simply adding features has left some with hefty investments and confused consumers. Bigger is not always better. More is not always desirable. The real opportunity for new entrants to the US market may be defined within niche markets where changing lifestyles allow for the emergence of new segments. Today, smart USA has surfaced as a clear example of right product, right place, right time.
Technical Paper

“Return to Nascar” Dodge NCTS History

2002-12-02
2002-01-3353
Dodge wanted to promote the new Dodge Ram 1500 pick-up truck and regain a presence in NASCAR and was looking for a venue that would accommodate this presence. NASCAR launched the NASCAR Craftsman Truck Series (NCTS) in 1995 and Dodge joined the series. This paper will cover the history of Dodge Motorsports Engineering presence in this series. The engineering objective was to develop an organization that would meet the corporate goals. The initial problem was that Dodge hadn't participated in a NASCAR series since 1978 and had no recent experience. The conclusion was that Dodge Motorsports Engineering could be competitive in NASCAR series racing.
Technical Paper

“Real-Time Estimation of Soot for a Wall Flow DPF Regeneration Management and an Efficient DOE for Model Calibration.”

2021-09-22
2021-26-0333
Estimation of soot deposited on a wall flow type DPF, is a vital information to ensure safe and efficient DPF management. Accuracy in determining mass of soot present inside the DPF ensures a correct regeneration management strategy in-terms of fuel efficiency and DPF safety considering soot overloading and too frequent regenerations. It also ensures an efficient detection of anomalies in the PM filtration mandated by the BSVI/EURO VI legislation as a part of On-board diagnostics. Classical approach of determining soot present inside DPF involves monitoring increase in pressure drop. Real time usage of such a model is limited by the inaccuracy of measuring pressure drop at low exhaust flows. Hence, contemporary engine controllers use pressure drop based models as a failsafe and estimate DPF soot loading by modelling soot release rate due to engine combustion and the rate at which it is oxidized.
Technical Paper

“Projection-by-Projection” Approach: A Spectral Method for Multiaxial Random Fatigue

2014-04-01
2014-01-0924
This paper presents a fatigue criterion based on stress invariants for the frequency-based analysis of multiaxial random stresses. The criterion, named “Projection-by-Projection” (PbP) spectral method, is a frequency-based reformulation of its time-domain definition. In the time domain PbP method, a random stress path is first projected along the axes of a principal reference frame in the deviatoric space, thus defining a set of uniaxial random stress projections. In the frequency-domain approach, the damage of stress projections is estimated from the stress PSD matrix. Fatigue damage of the multiaxial stress is next calculated by summing up the fatigue damage of every stress projection. The criterion is calibrated on fatigue strength properties for axial and torsion loading. The calculated damage is shown to also depend on the relative ratio of hydrostatic to deviatoric stress components.
Technical Paper

“Personal Integrity” and Man-Machine Integration

1982-02-01
821348
A sense of “personal integrity” blocks pilot use of new information about how he thinks. Research on human performance under stress done over the past fifty years indicates increased rigidity and regression to earlier learned behavior in high stress, and in low Stress a shift in attention to any domestic situation or on the job controversy which is of higher stress than that of the job at hand, all without the pilot's knowledge. Informal surveys of commercial pilot training and commercial pilot attitudes towards these studies indicate that the study findings directly confront learned cultural responses. Pilot and trainer reactions prevent the information from being adequately investigated or formally taught. The findings are not written into training manuals and pilots who are informally given the information do not have adequate access to the knowledge when it is needed.
Technical Paper

“Performance Emission Parameters Behavior of a DI Diesel Engine Using Al2O3 and TiO2 Nano Additive Biodiesel Blends”

2023-11-10
2023-28-0127
This study mainly focuses on the blending of Alumina and Titanium oxide nanoparticles (NP’s) in Spirulina biodiesel blends (SB20) to estimate the influence of engine (combustion, performance and emission) parameters of a diesel engine. The characterization of Al2O3 and TiO2 NP’s like SEM were reported. By using various fuel samples such as Diesel, SB20, SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO, the engine tests on the diesel engine were conducted at various load conditions. The BTE for SB20+80 ppm AO were enhanced by 12.35% and 8.4 % compared to the SB20 fuel and SB20+40 ppm AO fuel samples. The combustion parameters were improved for the NP’s as additives (Al2O3 and TiO2) fuels than the SB20 fuel sample because NP’s contain oxygen content. The parameters of engine exhaust emissions such as HC, CO and smoke are drastically diminished for the SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO fuels compared to the SB20 fuel.
Technical Paper

“Optimization” of Lower Deck Cargo Systems

1988-05-01
880973
The ability to carry cargo efficiently in passenger aircraft has influenced airline economics to the point that optimisation of the freight capacity is mandatory. This document discusses the alternative loading possibilities in defined Lover Deck Compartments and their doors to cater for current and future trends in ULD dimensions. As a result items for study centred on: 1) Optimisation of the available volumes Freight capacity resulting in the selection of “Pallets”-doors for both the Forward and AFT Compartments. Flexibility to meet Freight and Baggage requirements. Possible load arrangements to optimize aircraft C of G 2) Bulk Cargo Compartment Additional LD3 Container position in AFT/Bulk compartment to cater for an uneven number of Baggage container, allowing the carriage of an additional pallet. What is regarded as an optimum is presented.
Technical Paper

“Optimization of Operational Parameters on Engine Performance and Emissions of a Diesel Engine Powered with Mimusops Elengi Methyl Ester with Doped TiO2 Nanoparticle with Varying Injection Pressure”

2022-12-23
2022-28-0574
The current research was aimed at determining the most effective way to use alternative renewable feedstock to power a diesel engine. Mimusops elengi, a new and novel biofuel was recognized for this current study, which is widely available in the south of India. The investigation was conducted on B20 volume basis (20% Mimusops elengi methyl ester blended with 80% diesel). Furthermore, it was recognized that when the performance characteristics were traded off, the emission magnitude has slightly higher. To address the diesel engine pollution, an oxygenated nano additive like titanium oxide was dissipated only with the fuel blend at distinct mass fractions of 25 parts per million (ppm) with differing injection pressures of 180 bar, 200 bar, 220 bar, and 240 bar. The tests were created using a statistical programme known as design of experiments, which is purely based on Taguchi and response surface methodology.
Technical Paper

“OptiVent” - A New Approach for Controlling Mass Air Flow and Combustion in Direct Injection SI-Engines

2013-04-08
2013-01-0592
Combustion concepts for future SI engines try to meet CO2-emission commitments and legislation all over the world. Where the Diesel engine has an advantage by principle, the efficiency of the SI engine has to be improved significantly, while of course the exhaust emissions must not become worse. An approach is to reduce the gas exchange losses using fully variable valve trains on the intake side of the combustion engine. OptiVent is a patented new way of controlling the mass air flow in the cylinder of a combustion engine using opening valves during the compression phase of a four stroke engine. This technology regards a wider range of variability on the valvetrain components of the engine especially for opening the valves more than one time during a cycle. On the other hand it is necessary to combine this technology with direct injection to avoid fuel losses in the exhaust system and raising the exhaust hydrocarbon emission of the engine.
Technical Paper

“Living and Mobility” - Minimization of the Overall Energy Consumption by Using Synergetic Effects and Predictive Information

2012-04-16
2012-01-0496
Issues relating to the reduction of CO₂ emissions and energy consumption are currently more important than ever before. In the construction engineering and automotive sectors research and development efforts are focused closely on efficient buildings and automobiles. The designated target is a reduction in greenhouse gas emissions and overall energy demand. However, almost all approaches focus solely on either "buildings" or "mobility." By considering both aspects as a single holistic system, further energy saving potential arises due to synergetic effects. The goal of current research projects relating to Smart Homes and Vehicle to Building (V2B) is to smooth the electrical load profile on a household level rather than to reduce the individual-related total energy consumption and thereby the CO₂ emissions.
Technical Paper

“Insert and Fly” Using PCMCIA PC Cards in the Avionics Market

1994-11-01
942553
When looking into using PCMCIA PC Cards in the avionics market, three areas must be researched. The first is what are the applications and benefits of using the PC Cards while in flight, followed by the applications and benefits on the ground, and thirdly on how to make a PC Card that would stand up to the rugged avionics environment. PCMCIA PC Cards can be used in all aspects of flight. Three possible applications on the ground are; paperless documentation, modifications, flightline changes. Once airborne, PC Cards can be removed and a different functionality card can be inserted. One PC card socket can be used for many different functions during one flight. Some of the possible applications for PC Cards inflight are; flight plan changes, backup Line Replaceable Units (LRUs), and solid state data collection.
Technical Paper

“Influence of Engine Variables on Exhaust Oxides of Nitrogen Concentrations from a Multi-Cylinder Engine”

1967-02-01
670482
The influence of engine variables on the concentration of oxides of nitrogen present in the exhaust of a multicylinder engine was studied. The concentrations of nitric oxide (NO) were measured with either a mass spectrometer or a non-dispersive infrared analyzer. The NO concentration was low for rich operation (deficient in oxygen) and increased with air-fuel ratio to a peak value at ratios slightly leaner than stoichiometric proportions. A further increase in air-fuel ratio resulted in reduced NO concentrations. Advanced spark timing, decreased manifold vacuum, increased coolant temperature and combustion chamber deposit buildup were also found to increase exhaust NO concentration. These results support either directly or indirectly the hypothesis that exhaust NO concentration is primarily a result of the peak combustion gas temperature and the available oxygen.
Technical Paper

“Impact of Design Principles on End-of-Life and Recycling”

2024-01-16
2024-26-0163
Automotive industry is a major contributor to global carbon dioxide (CO2) emissions and waste generation. Not only do vehicles produce emissions during usage, but they also generate emissions during production phase and end of life disposal. There is an urgent need to address sustainability and circularity issues in this sector. This paper explores how circularity and CO2 reduction principles can be applied to design and production of automotive parts, with the aim of reducing the environmental impact of these components throughout their life cycle. Also, this paper highlights the impact of design principles on End-of-Life Management of vehicles. As Design decisions of Component impacts up to 80% of emissions [1], it is important to focus on this phase for major contribution in reduction of emissions.
Technical Paper

“How to Talk to Your Patent Lawyer”

1994-09-01
941768
A patent lawyer suggests ways for an inventor, either an individual inventor or one employed by a corporation, to make the most effective use of his or her patent lawyer. Patentable invention is defined, with the suggestion that inventing creates rights that can be lost by failure to act to preserve them. Secrecy, the duty of disclosure to the Patent and Trademark Office, and cost control are considered in their application to inventions and inventors.
X