Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Trapless” Trap – A Catalytic Combustion System of Diesel Particulates Using Ceramic Foam

1983-02-01
830082
“Trapless” Trap, which makes possible the effective collecting of particulates in diesel exhaust gas and their simultaneous combustion has been developed by use of a ceramic foam in combination with catalysts containing copper salt. From a TEM photograph, it was observed that the particulate was rapidly oxidized by mobile copper ion, showing worm-eaten like spots. Screening of various base metal salts by TGA presented CUCl2-KCl-NH4VO3 and CuCl2-KCl-(NH4)6Mo7O24 as very active catalysts for diesel particulate oxidation. They had thermal stability up to 900°C when they were supported on titania. The results obtained by measuring the back pressure using 1.8L diesel engine suggest the above trap to be a self-cleaning trapless trap.
Technical Paper

“Future” Diesel Fuel Compositions - Their Influence on Particulates

1988-08-01
881173
Five different diesel fuels, having been made available by the mineral oil industry within the framework of a research program of the Coordinating European Council (CEC/PF-26), were examined in addition to this program by the Klöckner-Humboldt-Deutz AG by means of the 13-mode test in accordance with the former US legislation and the ECE regulation No. 49 and by US Transient Tests. The results have been compared with results based on commercial European diesel fuel. There has been observed the emission behaviour of an 8-cylinder NA engine with a “state of the art” direct fuel injection system by particularly taking into consideration the particulate emission and the particulate components. The gaseous emissions, particularly CO and HC, are unfavourably influenced by low cetane numbers being associated with increased aromaticity in the diesel fuel.
Technical Paper

“Catalytic Engine” NOx Reduction of Diesel Engines with New Concept Onboard Ammonia Synthesis System

1992-02-01
920469
Ammonia is one of the most useful compounds that react with NOx selectively on a catalyst, such as V2O5-TiO2, under oxygen containing exhaust gas. However ammonia cannot be stored because of its toxicity for the small power generator in populated areas or for the diesel vehicles. A new concept for NOx reduction in diesel engine using ammonia is introduced. This system is constructed from the hydrogen generator by fuel reformer, the ammonia synthesizer, SCR catalyst for NOx reduction and the gas injection system of reformed gas into the cylinder. Experimental results show that, the SCR catalyst provides a very high rate of NOx reduction, reformed gas injection into cylinder is very effective for particulate reduction. WHEN CONSIDERING INTERNAL COMBUSTION ENGINES of the 1990's the question of how to harmonize the engine with the natural environments is one of the greatest problems. The internal combustion engine changes a substance into energy via its explosive combustion.
Technical Paper

‘Regulated’ and ‘Non-regulated’ Emissions from Modern European Passenger Cars

2006-04-03
2006-01-1516
Regulated emissions from four current production European vehicles were measured over the Common Artemis Driving Cycles (CADC). Particulate Mass and Particle Number measurements were made in accordance with the newly-developed draft Particulate Measurement Programme (PMP) developed for the UN-ECE's expert group on pollution and energy (GRPE). During the test programme measurements were also made of currently non-regulated emissions including PAHs and speciation of the particulate material and key hydrocarbons. CADC results are presented for each of the four vehicles tested (one conventional gasoline vehicle, two different types of diesel without Diesel Particulate Filter (DPF) and one diesel with DPF) with results measured on the regulated New European Driving Cycle (NEDC) test for comparison. The emissions results on the Artemis cycles showed some significant differences from those on the regulated (NEDC) test cycle.
Technical Paper

‘Issues and Behaviors of Airborne Particulate Matters under Microgravity Environment’

2004-07-19
2004-01-2328
During several ISS missions, there were false alarms at both US and Russian smoke detectors. High local airborne particulate concentrations and interior deposits are considered the causes for such anomalies. Alternatives are proposed to replace or complement these faulty smoke detectors. The entrained zeolite particles may play a role in causing problems with check valves and air save pumps in CDRA and Vozdukh. Another incidence has been the dispersion of particulates out of Metox regeneration oven. Particulate matters with aerodynamic diameter of 15 microns and above, which normally settle down on earth, stay airborne under micro-gravity and thereby cause the above-mentioned nuisances. The motion of such a particle along a gas stream with an initial velocity can be expressed by theoretical equations. Stokes' Law leads to the descriptions of inertial precipitation of aerosols that are important in solving the issues.
Technical Paper

λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

2018-04-03
2018-01-0891
Dynamic skip fire (DSF) has shown significant fuel economy improvement potential via reduction of pumping losses that generally affect throttled spark-ignition (SI) engines. In DSF operation, individual cylinders are fired on-demand near peak efficiency to satisfy driver torque demand. For vehicles with a downsized-boosted 4-cylinder engine, DSF can reduce fuel consumption by 8% in the WLTC (Class 3) drive cycle. The relatively low cost of cylinder deactivation hardware further improves the production value of DSF. Lean burn strategies in gasoline engines have also demonstrated significant fuel efficiency gains resulting from reduced pumping losses and improved thermodynamic characteristics, such as higher specific heat ratio and lower heat losses. Fuel-air mixture stratification is generally required to achieve stable combustion at low loads.
Technical Paper

Zirconia Based Ceramic, In-Cylinder Coatings and Aftertreatment Oxidation Catalysts for Reduction of Emissions from Heavy Duty Diesel Engines

1997-02-24
970469
Diesel engines are coming under stricter requirements to reduce emissions. particularly those of particulates and nitrogen oxides (NOx). Recently, the U. S. EPA put into place staged requirements for heavy duty diesel engines in urban bus applications which are aimed at ultimately bringing pre-1994 engines into particulate emissions compliance with 1994 heavy duty on-road truck standards (0. 1 g/bhp-hr TPM). This reflects the need to control emissions in crowded urban environments. Zirconia based ceramic combustion management coatings, although originally developed for adiabatic or low heat rejection engines to boost thermal efficiency, have also been shown to contribute to the reduction in diesel emissions. Heavy duty transient testing of rebuilt 2-stroke MUI diesel bus engines equipped with stabilized zirconia based coatings applied by thermal spray process have shown significant reduction in exhaust opacity relative to a baseline, uncoated engine.
Technical Paper

Zero-Dimensional Soot Modeling

2003-03-03
2003-01-1070
A zero-dimension model of spray development and particulate emissions for direct-injection combustion was developed. The model describes the major characteristics of the injection plume including: spray angle, liquid penetration, lift-off length, and temperatures of regions within the spray. The model also predicts particulate mass output over a span of combustion cycles, as well as a particulate mass-history over a single combustion event. The model was developed by applying established conceptual models for direct injection combustion to numerical relations, to develop a mathematical description of events. The model was developed in a Matlab Simulink environment to promote modularity and ease of use.
Technical Paper

X-Rays and Gamma Rays-Their Industrial Application

1937-01-01
370138
THE X-ray spectrum readily adapts itself to problems in chemical analysis and crystal formation. It is effective on very minute particles which otherwise cannot be segregated. A permanent record is made, and the specimens may be used over and over again, as the X-ray is non-destructive. As a means of inspection, X-ray clearly shows the interior of objects such as weldings castings, forgings, cold-worked metals, and so on. Inhomogeneities that are very slight in width and a fraction of one per cent in thickness are seen easily on a radiograph. Defects thus found may be eliminated summarily by checking various steps in production.
Technical Paper

Worst Case Solar Energetic Particle Events for Deep Space Missions

2001-07-09
2001-01-2330
Over the past two decades, various models of “worst case” solar energetic particle event (SPE) spectra have been proposed in order to place an upper bound on the likely doses to critical body organs of astronauts on missions outside Earth’s geomagnetic field. In this work, direct comparisons of organ dose estimates for various models of “worst case” SPE spectra are made by using the same transport code (BRYNTRN) and the same human geometry model (Computerized Anatomical Man). The calculations are made assuming nominal thicknesses of spacecraft aluminum shielding. Discussions of possible acute exposure responses from these exposures are presented.
Technical Paper

Worldwide Harmonization of Exhaust Emission Test Procedures for Nonroad Engines Based on the International Standard ISO 8178

1998-09-14
982043
An international standard for nonroad engines has been developed that comprises gaseous and particulate emissions measurement procedures, smoke testing, test cycles, and an engine family and group concept. Through a joint effort of industry and government agencies, ISO 8178 has become the basis for emissions legislation in the USA, the European Union and Japan and of the International Maritime Organization. The ultimate goal of worldwide harmonization for the worldwide engine industry has been reached, but much effort is still needed to maintain the level of harmonization achieved today. The validity of ISO 8178 has been demonstrated on a round robin test with three engines of 19 to 170 kW circulated around 28 test laboratories. Test-to-test repeatability was generally lower than 10 %. Lab-to-lab variability was less than 10 % for NOx and particulates, and over 25 % for HC and CO. The equivalence of partial flow and full flow dilution systems for particulates has been proven.
Technical Paper

Worldwide Developments in Motor Vehicle Diesel Particulate Control

1989-02-01
890168
The purpose of this paper is to review and summarize recent trends around the world regarding diesel vehicles, the health effects associated with diesel particulate, and the actions taken by governments to reduce these emissions. Further, the paper will summarize manufacturer efforts to develop control technologies for diesel particulate.
Journal Article

Window Buffeting Measurements of a Full Scale Vehicle and Simplified Small Scale Models

2009-04-20
2009-01-0181
Window buffeting is a major source of flow induced sound and vibration. This paper will describe window buffeting measurements acquired on a full scale vehicle as well as two different simplified small scale models. The experimental data sets included microphone and phase averaged Particle Image Velocimetry (PIV) measurements both of which show that the flow physics are qualitatively and quantitatively similar in all cases. The implication of this result is that simplified laboratory models of a vehicle are sufficient to study the various aspects of window buffeting in full scale vehicles.
Technical Paper

Wind Tunnel Measurements of Simulated Glaciated Cloud Conditions to Evaluate Newly Developed 2D Imaging Probes

2019-06-10
2019-01-1981
Instrumentation that has been used for characterization of mixed-phase and glaciated conditions in the past, like the OAP probes, are subject to errors caused by variations in diffraction on the images away from the object plane and by the discrete nature of their particle detection and sizing. Correction methods are necessary to consider their measurements adequate for high ice water content (IWC) environments judged to represent a significant safety hazard to propellers and turbofan engine operability and performance. For this reason, within the frame of EU FP7 HAIC project, instrumentation characterization and validation is considered a major element need for successful execution of flight tests campaigns. Clearly, instrumentation must be sufficiently reliable to assess the reproducibility of artificial clouds with high ice water content generated in icing tunnels.
Technical Paper

Wicking Fiber Chemisorption for Air Quality Improvement

1997-02-24
970555
The removal of toxic, corrosive, irritant, and odorous gases is a key strategy in improving air quality in any closed space. The technologies of granulated activated carbon or chemically impregnated dry media are commonly employed to address this issue. Both of these methods have their limitations in manufacturability, volume of space, and/or pressure drop associated with use in a given application. A new air quality technology has been developed which integrates liquid based chemisorption gas treatment with a shaped fiber media carrier. The patented wicking fiber shape holds more than its own weight in active reagents within intra-fiber channels. While the liquid volume is captured and retained through capillary action, a large surface area of the chemisorptive liquid is presented to the air flow for reaction and neutralization of the target contaminant gases. The wicking fibers may be implemented as fiber bundles, woven materials, or as non-wovens.
Technical Paper

Why P/M Provides the Advantage

1998-02-23
980310
In conventional powder metallurgy (P/M), structural stainless steel parts are produced by pressing alloy powder of the appropriate composition in a die to produce a compact. The compact is then sintered at an elevated temperature in a controlled atmosphere, bonding the particles together by diffusion and densifying the part. In this paper the P/M process is reviewed and its capabilities are discussed. Following this, the more common stainless steel compositions are detailed and the advantages of the P/M process are summarized.
Technical Paper

Whole Field MTV Measurements in a Steady Flow Rig Model of an IC Engine

1998-02-23
980481
The flow field inside a steady flow rig is investigated using Molecular Tagging Velocimetry (MTV). The MTV technique is essentially the molecular counterpart of the PIV based approaches, and does not require the use of seed particles. In the work reported here, the fluid velocity data are obtained simultaneously at typically 300 points over a plane. Spatial maps of the instantaneous velocity and vorticity fields are presented. The mean and RMS fluctuation of the two measured components of the velocity vector are in general agreement with the trends reported based on previous single-point LDV measurements in a similar geometry.
Technical Paper

White Smoke Emissions Under Cold Starting of Diesel Engines

1996-02-01
960249
More stringent regulations have been enforced over the past few years on diesel exhaust emissions. White smoke emission, a characteristic of diesel engines during cold starting, needs to be controlled in order to meet these regulations. This study investigates the sources and constituents of white smoke. The effects of fuel properties, design and operating parameters on the formation and emissions of white smoke are discussed. A new technique is developed to measure the real time gaseous hydrocarbons (HC) as well as the solid and liquid particulates. Experiments were conducted on a single cylinder direct injection diesel engine in a cold room. The gaseous HC emissions are measured using a high frequency response flame ionization detector. The liquid and solid particulates are collected on a paper filter placed upstream of the sampling line of the FID and their masses are determined.
X