Refine Your Search




Search Results

Technical Paper

“Understanding Diesel Engine Lubrication at Low Temperature”

Oil pumpability in passenger car gasoline engines was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. Oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at -18°C (0°F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier had better performance than a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance.
Technical Paper

“Seizure-Delay” Method for Determining the Seizure Protection of EP Lubricants

IT does not yet seem to be recognized fully that it is the local temperature at the surface of contact and not the local specific pressure that chiefly determines the occurrence of seizure under extreme-pressure-lubrication conditions. This local temperature is the result of the temperature level of the parts lubricated, considered as a whole (“bulk” temperature) and of a superimposed instantaneous temperature rise (temperature “flash”) which is localized in the surface of contact. It appears typical for extreme-pressure-lubrication conditions, as met in gear practice, that the temperature flash is much higher than the bulk temperature. With existing conventional test methods for the determination of the protection against seizure afforded by EP lubricants, a considerable rise of the bulk temperature mostly occurs; as it cannot be controlled sufficiently; thus, leaving an unknown margin for the temperature flash, it renders impossible a reliable determination.
Technical Paper

“Second-Generation” SAE 5W-30 Passenger Car Engine Oils

High performance lubricant additive systems have been developed to formulate SAE 5W-30 passenger car engine oils which meet current and anticipated requirements of the North American original equipment manufacturers. The trend in North America is to recommend SAE 5W-30 oils that not only meet the API SF requirements for gasoline engines (“first-generation” oils), but also meet the stringent API CC requirement for light duty diesel engines (“second-generation” oils). Furthermore, the engine builders have issued “world specifications” for motor oils which incorporate additional “second-generation” SAE 5W-30 characteristics, such as enhanced API SF limits, improved fuel efficiency, an increased margin of bearing protection, and lower finished-oil phosphorus levels. The additive systems described herein exceed API SF and CC requirements as well as “second-generation” performance hurdles.
Technical Paper


Research information on solid lubricants has been compiled for consideration in the possible use of such materials in aircraft electrical equipment. Solid lubricants are capable of lubricating at the maximum temperatures (600° F) for aircraft electrical equipment. Many solids that adhere well to metals may be useful lubricants; those with layer-lattice structure usually give low friction. Solid lubricants are most commonly used as bonded films but the use of fluid carriers and surface reaction products have considerable merit.
Technical Paper

“Hot Tube Test”-Analysis of Lubricant Effect on Diesel Engine Scuffing

To prevent engine scuffing in the field a new laboratory test called the Hot Tube Test has been established in order to evaluate the high temperature stability of diesel engine oils. In a strip mining application field test using 47 bulldozers powered by the same engine type, half of the engines suffered from piston scuffing failures when operated on a variety of commercially available API CD quality SAE 30 Grade engine oils. All the field test oils have been investigated using the Hot Tube Test, and an analysis of the results indicates that it would be possible to accurately predict scuffing failures by this test method. Furthermore, the reliability of this analysis has been verified by bench engine testing on reference oils. The reasons why the Hot Tube Test predicts the anti-scuffing performance of engine oils are discussed.
Technical Paper

“All Electric” Controls and Accessories for Ground Vehicle Gas Turbine Propulsion Systems

This paper discusses the use of electromechanical devices as the kinematic portions of a microprocessor based gas turbine control system. Specific applications are: 1. An electric motor driven, positive displacement pump, which provides metered high pressure fuel to the distribution manifold. Fuel metering to be provided by varying the motor angular velocity. 2. An electric motor driven lube oil pump. 3. Electromechnical actuators for motion and control of compressor and power turbine variable geometry. 4. A starter/generator integral with the gas generator. Topics covered include: Comparison to conventional hydro-mechanical systems. Response characteristics of the fuel pump and actuator systems. Brushless D.C. motor characteristics. Power electronics requirements for brushless D.C. motors. Control electronics interface with brushless D.C. motor systems. Reliability and maintainability issues. Diagnostic/prognostic enhancements.
Technical Paper

the identification and characterization of RUMBLE AND THUD

SIMULTANEOUS RECORDINGS of cylinder pressure, audible sound, and crankshaft motion have shown that rumble is a noise associated with bending vibrations of the crankshaft. The vibrations are caused by abnormally high rates of pressure rise near the top dead center piston position. In this study the high rates of pressure rise were obtained by inducting deposits into the the engine. Thud is a torsional vibration of the crankshaft, similar in sound to rumble but resulting from much earlier occurrence of the maximum rates of pressure rise. Rumble vibrations consisted of a fundamental frequency of 600 cps and higher harmonics in the 11/1 compression ratio V-8 laboratory engine used in the investigation. The audible noise of rumble was predominantly composed of the second harmonic or about 1200 cps.
Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Technical Paper

new Fluoroester Lubricants for high-temperature applications

THE NEED for greater speed in military aircraft and missiles is, without question, the primary force behind the current quest for lubricants of increased thermal and oxidative stability. Turbojet engines soon to be available will require improved lubricants for trouble-free operation. Once developed, these oils may find use in the engines of future civilian aircraft as well as in a variety of special applications. It is the purpose of this paper to discuss the results of an experimental program in the field of high-temperature lubricants. Problems of relating chemical structure to the physical properties and performance of highly fluorinared ester lubricants will be described. Background information in the field of turbojet engine lubrication will be presented.
Technical Paper

knock-knock: Spark Knock, Wild Ping, or Rumble?

ENGINE noise has become an increasing problem with the higher and higher compression ratios of present-day automotive engines. Because fuel octane number cannot be raised indefinitely, the problem is one of engine design and selection of crankcase lubricating oils and gasoline formulations, the authors think. This paper describes investigations into the cause of spark knock, wild ping, rumble, and the added problem of hot-spot surface ignition (which also intensifies as compression ratios increase). The authors have found gasolines with phosphorous additives, used with properly formulated multiviscosity lubricating oils, provide a partial answer to the problem of engine rumble. The authors conclude that very exact tailoring of fuels, lubricants, additives, and engines will be necessary to prevent engine noise if compression ratios continue to rise.
Technical Paper

Worldwide Environmental Regulations and Their Impact on Lubricant Additives

Legislation in countries from all parts of the globe have been proposed or enacted in an effort to protect man and the environment from the effects of harmful chemicals. Since their inception these proposed or enacted laws have been effective safeguards in protecting man and the environment on a global basis. This paper reviews several of these regulations, including those enacted by the United States, the European Economic Community, Japan and Australia. General guidelines on what it takes to comply with these regulations and their impact on the lubrication industry will be discussed. Proposed regulations on marine pollution (MARPOL) and the effect of these regulations on the transport of lubricant additives and finished lubricants will also be reviewed.
Technical Paper

Will It Run at 70 Below? A Progress Report on Arctic Winter Operation of Automotive Equipment

This paper describes special winterization aids and petroleum products that have been developed to make possible the operation of automotive machinery, on an emergency basis, at temperatures as low as -70 F. A package of five basic petroleum products appropriate for use on the North Slope of Alaska has served there successfully for several years at temperatures consistently in the -40 F range. The products may be blended to obtain additional properties. The motor gasoline and diesel fuels developed for this package are discussed, along with the pour point and viscosity properties of Arctic winter lubricants-motor oils, ATF and torque fluids, hydraulic oils, gear oils, and greases.
SAE MOBILUS Subscription

Wiley SAE MOBILUS® eBook Package

Committed to being the primary source for aerospace and ground vehicle engineering resources, SAE International has added the full compilation of our Wiley eBook collections to the SAE MOBILUS® technical resource platform. Purchasable as an annual subscription and containing the titles from the Wiley Aerospace Collection, the Wiley Automotive Collection, the Wiley Computer Systems Collection, and the Wiley Cyber Security Collection.
SAE MOBILUS Subscription

Wiley Automotive Collection

Purchasable as an annual subscription, the Wiley Automotive Collection contains 20 eBook titles and focuses on a wide range of categories, including engines, transmission, chassis, body, electrical, safety, and manufacturing. Titles covering new and emerging topics such as battery technology and electric and hybrid vehicles are included as well, making the series an essential addition to any institution’s automotive resources.
Technical Paper

Wheel Bearing Lubrication Development for Low Friction and Water Resistance

Recently, vehicle production volumes have been increasing, particularly in newly developing countries that often lack adequate infrastructure. These regions utilize many unimproved roads and frequently experience heavy rainfall, requiring robust product features. In contrast, developed countries, with well-maintained infrastructure, have emphasized protection of the environment, requiring automobile manufacturers to target reductions in carbon dioxide emissions. Hub unit bearings, which enable smooth wheel rotation, are mounted at the wheel center. The hub bearing is a critical part which supports the automotive body and requires high reliability. To make environmental progress, hub unit bearings have increasing requirements for low friction. NSK has developed effective grease technologies to meet the diverse requirements of hub unit bearings, such as high reliability and low friction under severe environmental conditions.
Technical Paper

Wheel Bearing Adjustment Procedures

New technology placed on specific components within the wheel end system, required modifications to existing tapered wheel bearing adjustment procedures. A new method for vehicles, which use tapered roller bearings, required a procedure addressing new technologies for the wheel end system. OEM and service technicians would benefit from concise procedures. Technologies engineered and developed for ABS (Anti-skid Brake Systems), extended brake blocks and synthetic lubricants, required research for the data base. Research to optimize the operating environment through improved maintenance procedures helped in achieving optimum wheel system operation. A tapered wheel bearing adjustment procedure and visual chart are the results profiting the vehicle manufacturers and field service technicians.