Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Material Efficiency Ratio to Evaluate the Methods for Improving the Torsional Rigidity of a Pickup Chassis Frame

2018-04-03
2018-01-1024
While offering improved crash worthiness and significant lightweighting opportunities, the increased use of advanced high strength steels (AHSS) may compromise the stiffness and NVH performance of vehicles due to reduced part thickness. Different methods to improve the torsional rigidity were studied on a pickup chassis frame. These methods include adding bulkhead pairs as reinforcement, increasing the thicknes of frame parts, and enlarging the closed sections on the rails. Structural optimization was conducted for each stiffness improvement method and the minimal mass increase required to reach the improvement targets was obtained. A material efficiency ratio μ is proposed in this research and used as a criterion to evaluate the efficiency of a mass increase to improve the structural stiffness and NVH characteristics of vehicles. Based on this parameter, the methods to improve the torsional rigidity of the pickup frame in all design spaces were evaluated.
Technical Paper

A Method of Evaluating the Joint Effectiveness on Contribution to Global Stiffness and NVH Performance of Vehicles

2017-03-28
2017-01-0376
While Advanced High Strength Steels (AHSS) and the next generation AHSS grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
Technical Paper

A Tailor Welded Blanks Design of Automotive Front Rails by ESL Optimization for Crash Safety and Lightweighting

2018-04-03
2018-01-0120
Utilizing the tailor welded blanks (TWBs) design along with the latest AHSS grades for the front rails on a sedan was studied to reduce the weight of the vehicle and improve the crash safety performance. To find the most efficient material usage, the front rail parts were tailored into multiple blanks with varying thickness. A structural thickness optimization study of the tailored front rails was conducted for IIHS moderate overlap frontal crash, and the tailored blank thickness was set as design variable. The equivalent static loads (ESL) method was adopted for the thickness optimization, which allows many design variables to be optimized simultaneously. The torsion and bending stiffness of the sedan body in prime were set as design constraints, and would not be compromised. The optimal thickness configurations of the TWB designs by ESL optimization suggest that the weight of the frontal rails can be reduced by more than 30% while still maintaining the crash safety performance.
X