Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Comprehensive Study of Hole Punching Force for AHSS

The elevated strength of advanced high strength steels (AHSS) leads to enormous challenges for the sheet metal processing, one of which is hole punching operation. The total tonnage must be estimated at each trimming stage to ensure successful cutting and protect the press machine. This paper presents the effects of hole punch configurations on the punching force with the consideration of punch shape, cutting clearance and material grade. The hole punching experiments were performed with DP590, DP980, DP1180 and one mild steel as a reference. The punching force coefficient is defined and presents a negative correlation with the material strength based on the experimental data. Surface quality was examined to analyze the damage accumulation during the punching process. The cutting mechanisms with various punch shapes were revealed through an extensive finite element simulation study.
Journal Article

A New Combined Isotropic, Kinematic and Cross Hardening Model for Advanced High Strength Steel under Non-Linear Strain Loading Path

A fully modularized framework was established to combine isotropic, kinematic, and cross hardening behaviors under non-monotonic loading conditions for advanced high strength steels. Experiments under the following types of non-proportional loading conditions were conducted, 1) uniaxial tension-compression-tension/compression-tension-compression full cycle reversal loading, 2) uniaxial reversal loading with multiple cycles, and 3) reversal shear. The calibrated new model is decoupled between isotropic and kinematic hardening behaviors, and independent on both anisotropic yield criterion and fracture model. Nine materials were calibrated using the model, include: DP590, DP600, DP780, TRIP780, DP980LY, QP980, AK Steel DP980, TBF1180, and AK Steel DP1180. Good correlation was observed between experimental and modeled results.
Technical Paper

An Analytical Model for Spring-Back Prediction in U-Channel Forming with Advanced High Strength Steel

Spring-back phenomena are critical in stamping procedures for advanced high strength steel. An analytical model is developed to predict the spring-back effect for a U-channel part with post-stretching process. The stress distribution is obtained by direct application of material constitutive relationship. The subjected loading conditions are sequentially bending, (un-bending), and uniform stretching, based on different zones in the part. Both the loading history and the friction effects are considered in the model. The bending moments are obtained to generate a theoretical spring-back shape. Great performance in spring-back control is achieved by applying certain high level of external forces. FE simulation is conducted for the identical stamping process with post-stretching. Good correlation is observed between the analytical and numerical solutions/experimental results under various scenarios.
Technical Paper

Effects of Punch Shapes and Cutting Configurations on the Dimensional Accuracy of Punched Holes on an AHSS Sheet

Dimensional accuracy of punched hole is an essential consideration for high-quality sheet metal forming. An out-of-shape hole can give rise to manufacturing issues in the subsequent production processes thus inducing quality defects on a vehicle body. To understand the effects of punch shapes and cutting configurations on punched hole diameter deviations, a systematical experimental study was conducted for multiple types of AHSS (DP1180, DP980, DP590) and one mild steel. Flat, conical and rooftop punches were tested respectively with three cutting clearances on each material. The measurement results indicated different diameter enlargement modes based on the punch profiles, and dimensional discrepancies were found to be more significant with the stronger materials and higher cutting clearance. To uncover the mechanism of punched hole enlargement, a series of finite element simulations were established for numerical investigation.
Technical Paper

Numerical Study of Twist Spring-back Control with an Unbalanced Post-stretching Approach for Advanced High Strength Steel

Twist spring-back would interfere with stamping or assembling procedures for advanced high strength steel. A “homeopathic” resolution for controlling the twist spring-back is proposed using unbalanced post-stretching configuration. Finite element forming simulation is applied to evaluate and compare the performance for each set of unbalanced post-stretching setup. The post-stretching is effectuated by stake bead application. The beads are separated into multiple independent segments, the height and radii of which can be adjusted individually and asymmetrically. Simulation results indicate that the twist spring-back can be effectively controlled by reducing the post-stretching proximate to the asymmetric part area. Its mechanism is qualitatively revealed by stress analyses, that an additional but acceptable cross-sectional spring-back re-balances the sprung asymmetrical geometry to counter the twist effect.