Refine Your Search



Search Results

Technical Paper

A Detailed Synchronous Machine Model

A synchronous machine model is set forth that simultaneously incorporates magnetizing path saturation, leakage saturation, and transfer function representations of the rotor circuits. A parameter identification procedure consisting of voltage step tests as well as standstill frequency response tests is described. The model's predictions are validated using the Naval Combat Survivability Generation and Propulsion test bed.
Technical Paper

A Dynamic Two-Phase Component Model Library for High Heat Flux Applications

Pumped two-phase systems using mini or microchannel heat sink evaporators are prime candidates for high heat flux applications due to relatively low pumping power requirements and efficient heat removal in compact designs. A number of challenges exist in the implementation of these systems including: ensuring subcooled liquid to the pump to avoid cavitation, avoiding dry out conditions in heat exchangers that can lead to failures of the components under cooling, and avoiding flow instabilities that can damage components in an integrated system. To reduce risk and cost, modeling and simulation can be employed in the design and development of these complex systems, but such modeling must include the relevant behavior necessary to capture the above dynamic effects.
Technical Paper

A New Lab for Testing Biofiltration for Advanced Life Support

Bioregenerative systems for removal of gaseous contaminants are desired for long-term space missions to reduce the equivalent system mass of the air cleaning system. This paper describes an innovative design of a new biofiltration test lab for investigating the capability of biofiltration process for removal of ersatz multi-component gaseous streams representative of spacecraft contaminants released during long-term space travel. The lab setup allows a total of 24 bioreactors to receive identical inlet waste streams at stable contaminant concentrations via use of permeations ovens, needle valves, precision orifices, etc. A unique set of hardware including a Fourier Transform Infrared (FTIR) spectrometer, and a data acquisition and control system using LabVIEW™ software allows automatic, continuous, and real-time gas monitoring and data collection for the 24 bioreactors. This lab setup allows powerful factorial experimental design.
Technical Paper

Aggregate System Level Material Analysis for Advanced Life Support Systems

In this paper, an aggregate system level modeling and analysis framework is proposed to facilitate the integration and design of advanced life support systems (ALSS). As in process design, the goal is to choose values for the degrees of freedom that achieve the best overall ALSS behavior without violating any system constraints. At the most fundamental level, this effort will identify the constraints and degrees of freedom associated with each subsystem and provide estimates of the system behavior and interactions involved in ALSS. This work is intended to be a starting point for developing insights into ALSS from a systems engineering point of view. At this level, simple aggregate static input/output mapping subsystem models from existing data and the NASA ALS BVAD document are used to debug the model and demonstrate feasibility.
Technical Paper

An Automated State Model Generation Algorithm for Simulation/Analysis of Power Systems with Power Electronic Components

In this paper, a recently-developed algorithmic method of deriving the state equations of power systems containing power electronic components is described. Therein the system is described by the pertinent branch parameters and the circuit topology; however, unlike circuit-based algorithms, the difference equations are not implemented at the branch level. Instead, the composite system state equations are established. A demonstration of the computer implementation of this algorithm to model a variable-speed, constant-frequency aircraft generation system is described. Because of the large number of states and complexity of the system, particular attention is placed on the development of a model structure which provides optimal simulation efficiency.
Technical Paper

Analysis and Simulation of a UAV Power System

Models for the components of a long-duration UAV power system are set forth. The models include the solar array, solar array power converter, fuel cell and electrolyzer system and corresponding power converter, and propulsion load. Based on these models, a power management control is derived, which when coupled with the component models, are used to simulate power system performance during start-up, through a day-night cycle, and through a solar eclipse.
Technical Paper

Analysis of Switched Capacitive Machines for Aerospace Applications

Electric machinery is typically based upon the interaction of magnetic fields and current to produce electromagnetic force or torque. However, force and torque can also be produced through the use of electric fields. The purpose of this investigation is to briefly analyze the use of a switched capacitance electric field based machine to see if it may have aerospace applications for use as either propulsion motor for unmanned aerospace vehicle (UAV) or lightweight flywheel applications for aerospace applications. It is shown that although its use as a hub propulsion motor is not feasible, it may be a candidate for use in a power flywheel energy storage system.
Technical Paper

Analysis of Widespread Fatigue Damage in Lap Joints

This paper describes research to analyze widespread fatigue damage in lap joints. The particular objective is to determine when large numbers of small cracks could degrade the joint strength to an unacceptable level. A deterministic model is described to compute fatigue crack growth and residual strength of riveted panels that contain multiple cracks. Fatigue crack growth tests conducted to evaluate the predictive model are summarized, and indicate good agreement between experimental and numerical results. Monte Carlo simulations are then performed to determine the influence of statistical variability on various analysis parameters.
Technical Paper

Automated Evolutionary Design of a Hybrid-Electric Vehicle Power System Using Distributed Heterogeneous Optimization

The optimal design of hybrid-electric vehicle power systems poses a challenge to the system analyst, who is presented with a host of parameters to fine-tune, along with stringent performance criteria and multiple design objectives to meet. Herein, a methodology is presented to transform such a design task into a constrained multi-objective optimization problem, which is solved using a distributed evolutionary algorithm. A power system model representative of a series hybrid-electric vehicle is considered as a paradigm to support the illustration of the proposed methodology, with particular emphasis on the power system's time-domain performance.
Technical Paper

Average Value Modeling of Finite Inertia Power Systems with Harmonic Distortion

Typically, average-value models of power system components neglect harmonic information. Herein, a systematic method of including harmonic information in average-value models based on the theory of multiple reference frames is set forth. Computer simulation results show that when there is significant harmonic distortion of the ac distribution bus the models presented herein are more accurate than traditional average-value models. Furthermore, much of the computational advantage of average-value techniques over detailed modeling techniques is retained.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

Communication Skills Development: Practical Implications for a Culture of Safety in Aviation Maintenance

The negative consequences of unsafe behaviors on the job heavily contribute to the rising costs of doing business in terms of both organization dollars and diminished human quality of life. Developing a safety culture provides a positive proactive approach toward creating a working environment where safety is a top priority. An integral part of accomplishing this task is directly related to training individuals on how the interactions that occur among organizational members and the messages their behaviors send influence others' behaviors. This can be best addressed through communication skill development initiatives including mutual responsibility, trust, avoiding punitive strategies and facilitating assertiveness.
Technical Paper

Complementary Disinfection (UV Irradiation and Iodination) for Long-term Space Missions: Preliminary System Design

As part of the NASA Specialized Center of Research and Training for Advanced Life Support (NSCORT-ALS) at Purdue University, a complementary disinfection process, which uses ultraviolet (UV) radiation as the primary disinfectant and iodine as the secondary, residual disinfectant, is being developed. UV radiation was selected as the primary disinfectant because it is effective at inactivating a broad spectrum of microorganisms and has minimal potential for the formation of disinfection byproducts. Iodine, which is effective at inactivating many microorganisms and is less likely to react and form disinfection byproducts than other halogens, was selected as the residual disinfectant because it has the potential for dual use as an on-line UV monitor, as well as a disinfectant.
Technical Paper

Critical Management Skills for Maintenance Managers

Recognizing that technicians and managers need additional skills in order to compete for and successfully fill management positions, a major air carrier requested that Purdue University perform a study with employees in order to identify specific skills that are required to perform successfully in leadership positions. The study identified three core competencies (leadership, communication, and management processes) needed to be a successful leader in a major air carrier environment and outlined several related knowledge and skills within each area. Currently, many individuals in front line and mid-level management are lacking in several of these knowledge bases and skill sets. Consequently, the value of addressing current deficiencies through educational and experiential learning opportunities was proposed.
Journal Article

Designing for Large-Displacement Stability in Aircraft Power Systems

Due to the instabilities that may occur in power systems with regulated loads such as those used in military aircraft, ships, and terrestrial vehicles, many analysis techniques and design methodologies have been developed to ensure stable operation for expected operating conditions. However, many of these techniques are difficult to apply to complex systems and do not guarantee large-displacement stability following major disturbances such as faults, regenerative operation, large pulsed loads, and/or the loss of generating capacity. In this paper, a design paradigm is set forth guaranteeing large-displacement stability of a power system containing a significant penetration of regulated (constant-power) loads for any value of load power up to and including the steady-state rating of the source. Initial investigations are performed using an idealized model of a dc-source to determine the minimum requirements that ensure large-displacement stability.
Technical Paper

Developing Education and Outreach Initiatives at the Indiana Space Grant Consortium

The Indiana Space Grant Consortium is one of 52 members of the National Space Grant College and Fellowship Program (“Space Grant”), which was initiated by NASA in 1988. Space Grant is designed to be a source of NASA-related information, awards, and programs to enhance education, outreach, and workforce development for the United States. Based on the land grant model of public university education, Space Grant seeks to spread the vision of NASA to increase science, technology, engineering, and math (STEM) awareness; NASA-related education; workforce development; outreach and research activities. This paper describes the evolution of these activities in Indiana.
Technical Paper

Education and Outreach Program Designed for NASA Specialized Center of Research and Training in Advance Life Support (ALS/NSCORT)

The NASA Specialized Center of Research and Training in Advanced Life Support (ALS/NSCORT) Education and Outreach Program is designed to engage audiences through concepts and technologies highlighted in the NSCORT research program. The outreach program is composed of three thrust areas. These areas are technical outreach (graduate education, technology transfer, presentations to industry, etc.), educational outreach (professional development, undergraduate, K-12), and public outreach (museums, state fairs, etc.) Program design of the technical and educational outreach began in January 2003. This paper reports anecdotal data on one ALS/NSCORT outreach program and gives a brief description of the other programs in their pilot stages. Technical and educational outreach programs developed to date include: 1) Summer Fellowship Research Program, 2) Distance Learning Course, 3) Key Learning Community Collaborative Project and 4) Mission to Mars.
Journal Article

Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling

Deep-hole drilling is among the most critical precision machining processes for production of high-performance discrete components. The effects of drilling with superimposed, controlled low-frequency modulation - Modulation-Assisted Machining (MAM) - on the surface textures created in deep-hole drilling (ie, gun-drilling) are discussed. In MAM, the oscillation of the drill tool creates unique surface textures by altering the burnishing action typical in conventional drilling. The effects of modulation frequency and amplitude are investigated using a modulation device for single-flute gun-drilling on a computer-controlled lathe. The experimental results for the gun-drilling of titanium alloy with modulation are compared and contrasted with conventional gun-drilling. The chip morphology and surface textures are characterized over a range of modulation conditions, and a model for predicting the surface texture is presented. Implications for production gun-drilling are discussed.
Technical Paper

Equivalent System Mass (ESM) Estimates for Commercially Available, Small-Scale Food Processing Equipment

One of the challenges NASA faces today is developing an Advanced Life Support (ALS) system that will enable long duration space missions beyond low earth orbit (LEO). This ALS system must include a food processing subsystem capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food products from pre-packaged and re-supply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. However, designing, building, developing, and maintaining such a subsystem is bound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste, and other ESM parameters influence the selection of processing equipment and techniques.