Refine Your Search

Topic

Search Results

Technical Paper

A Model based Difference Approach and Change Impact Rules Language to manage Variability and Change Requests in Safety Critical Automotive Functions

2016-04-05
2016-01-0125
Automotive engineering processes are dynamic, iterative and driven by changes. Reasons for changes on development artifacts are manifold, but the result is a new evolution step which may influence all, some, or just a single development artifact. Consequently, research on impact analysis put forth approaches to assess the adverse effects of changes. However, understanding and implementing functional changes and its consequences in the safety domain is often aggravated by dependencies between different types of development artifacts, scattered in various (tool) formats. Safety properties may change depending on the type of a modification. Thereby, connected analyses like fault trees, Failure Modes and Effects Analysis (FMEA), and safety concepts cannot be reused easily if the artifacts on which they are based on are affected by changes. In this paper we suggest a new difference analysis approach which allows a (semi-)automated comparison of safety work products based on models.
Video

ARAMiS - Taming Multicores for Safe Transportation

2012-05-17
Multicore processor are well established in classical and tablet personal computers for some year. Such processors use more then one central core for computation and allow to integrate more computational power with smaller costs. However more than 90% of all processors worldwide are not placed in classical IT but are empedded in bigger systems like in modern vehicles or airplanes. Such systems face a very high demand in terms of safety, security an reliability which hinders the use of multicores in such systems. The funded project ARAMiS faces these demands and has the goal to enable the usability of multicore systems in the domains automotive and avionics, as well as later also railway. ARAMiS is the basis for higher traffic safety, traffic efficiency and comfort.
Technical Paper

Active Suppression of Buffeting at the Audi AAWT: Operational Experiences and Enhancements of the Control Scheme

2004-03-08
2004-01-0804
In order to suppress the well-documented low frequency pressure fluctuations in open jet wind tunnels, termed ‘wind tunnel buffeting’, an Active Resonance Control (ARC) System was implemented in the Audi aero-acoustic wind tunnel several years ago. This ARC-Sys-tem reduces the periodic pressure fluctuations by up to 23 dB and completely eliminates the periodic velocity fluctuations using a simple feedback control scheme. To set up the ARC system in practice, the system's parameters are optimised once for each critical flow velocity, when the vortex shedding frequency coincides with an acoustic resonance mode of the wind tunnel. Due to the fact that both frequency and amplitude of the excited resonances not only depend on flow velocity but also on other parameters such as collector position and test-car geometry, the system has to be adjusted with regard to each of these cases.
Technical Paper

Architectural Concepts for Fail-Operational Automotive Systems

2016-04-05
2016-01-0131
The trend towards even more sophisticated driver assistance systems and growing automation of driving sets new requirements for the robustness and availability of the involved automotive systems. In case of an error, today it is still sufficient that safety related systems just fail safe or silent to prevent safety related influence of the driving stability resulting in a functional deactivation. But the reliance on passive mechanical fallbacks in which the human driver taking over control, being inevitable in such a scenario, is expected to get more and more insufficient along with a rising degree of driving automation as the driver will be given longer reaction time. The advantage of highly or even fully automated driving is that the driver can focus on other tasks than controlling the car and monitoring it’s behavior and environment.
Technical Paper

Bayesian Test Design for Reliability Assessments of Safety-Relevant Environment Sensors Considering Dependent Failures

2017-03-28
2017-01-0050
With increasing levels of driving automation, the perception provided by automotive environment sensors becomes highly safety relevant. A correct assessment of the sensors’ perception reliability is therefore crucial for ensuring the safety of the automated driving functionalities. There are currently no standardized procedures or guidelines for demonstrating the perception reliability of the sensors. Engineers therefore face the challenge of setting up test procedures and plan test drive efforts. Null Hypothesis Significance Testing has been employed previously to answer this question. In this contribution, we present an alternative method based on Bayesian parameter inference, which is easy to implement and whose interpretation is more intuitive for engineers without a profound statistical education. We show how to account for different environmental conditions with an influence on sensor performance and for statistical dependence among perception errors.
Technical Paper

Being Innovative by Following Standards - Evolving Standards in the Automotive Industry for the Development of Safety Related Vehicle Software

2006-04-03
2006-01-1239
This paper describes how a safety-oriented software development could look like as soon as an appropriate standard exists which is applicable for the automotive industry. Such a standard is currently being developed which is a tailoring of the safety standard IEC61508. The IEC61508 is generic and not specific for any industry. It allows tailoring of the complete safety lifecycle for specific domains. This paper focuses mainly on the software lifecycle of the evolving standard for the automotive industry. With regard to the development process the objectives of each phase are explained and it is described how these can be achieved by using certain techniques and measures.
Technical Paper

Cockpit Module Analysis Using Poroelastic Finite Elements

2014-06-30
2014-01-2078
Strategies for weight reduction have driven the noise treatment advanced developments with a great success considering the already mastered weight decreases observed in the last years in the automotive industry. This is typically the case for all soft trims parts. In the early 2010's a typical european B-segment car soft trims weights indeed 30 to 40% less than in the early 2000's years. The main driver behind such a gap has been to combine insulation and absorption properties on a single part while increasing the number of layers. This product-process evolution was conducted using a significant improvement in the simulation capacities. In that sense, several studies presenting very good correlation results between Transmission Loss measurements and finite elements simulations on dashboard or floor insulators were presented. One may consider that those kinds of parts have already achieved a considerable improvement in performance.
Technical Paper

Customer Orientation in the Design Process of an Electromechanical Parking Brake - A Vehicle Manufacturer's Point of View

2003-10-19
2003-01-3310
The ever increasing use of electronics in modern vehicles has not stopped at comfort systems such as power seats and power windows. Every conventional system that requires operating force will eventually be replaced by a self-powered version. One such item is the electromechanical parking brake of the new Audi A8, offering a host of new features. Despite the many options for new functions, it is nevertheless important to keep the driver in mind. Being engineers, one tends to overlook that not all customers share our excitement for gadgets and overly complicated technical features.
Technical Paper

Cyber Security in the Automotive Domain – An Overview

2017-03-28
2017-01-1652
Driven by the growing internet and remote connectivity of automobiles, combined with the emerging trend to automated driving, the importance of security for automotive systems is massively increasing. Although cyber security is a common part of daily routines in the traditional IT domain, necessary security mechanisms are not yet widely applied in the vehicles. At first glance, this may not appear to be a problem as there are lots of solutions from other domains, which potentially could be re-used. But substantial differences compared to an automotive environment have to be taken into account, drastically reducing the possibilities for simple reuse. Our contribution is to address automotive electronics engineers who are confronted with security requirements. Therefore, it will firstly provide some basic knowledge about IT security and subsequently present a selection of automotive specific security use cases.
Technical Paper

Encapsulation of Software-Modules of Safety-Critical Systems

2007-04-16
2007-01-1485
More and more high-level algorithms are emerging to improve the existing systems in a car. Often these algorithms only need a platform with a bus connection and some resources such as CPU time and memory space. These functions can easily be integrated into existing systems that have free resources. This paper describes some encapsulation techniques and mechanisms that can be used in the automotive domain. The discussion also takes into account the additional resources consumed on the microcontroller to meet these requirements and by the software to implement the encapsulation mechanisms. Overviews of some general concepts of software-architectures that provide encapsulation are also shown.
Technical Paper

End-To-End Protection for SIL3 Requirements in a FlexRay Communication System

2008-04-14
2008-01-0112
This paper proposes end-to-end protection mechanisms to be added to a generic FlexRay network in order to achieve fault detection and integrity levels sufficient for a SIL3 fail safe communication system. The mechanisms are derived from the random hardware failure modes to be considered for communication controllers according to IEC 61508. Mechanisms provided by the FlexRay protocol are pointed out. Additional features necessary to fulfil the requirements are discussed. It is shown how to calculate the failure rate probabilities of the CRC used as a safety code with respect to EN 50159.
Technical Paper

Experimental and Numerical Investigations on Time-Resolved Flow Field Data of a Full-Scale Open-Jet Automotive Wind Tunnel

2021-04-06
2021-01-0939
One main goal of the automotive industry is to reduce the aerodynamic drag of passenger vehicles. Therefore, a deeper understanding of the flow field is necessary. Time-resolved data of the flow field is required to get an insight into the complex unsteady flow phenomena around passenger vehicles. This data helps to understand the temporal development of wake structures and enables the analysis of the formation of vortical structures. Numerical simulations are an efficient method to analyze the time-resolved data of the unsteady flow field. The analysis of the steady and unsteady numerical data is only relevant for aerodynamic developments in the wind tunnel, if the predicted temporal evolving structures of a passenger vehicle’s simulated flow field correspond to the structures of the flow field in the wind tunnel. In this study, time-resolved measurements of the empty wind tunnel and a notchback passenger vehicle in the wind tunnel are conducted.
Technical Paper

Further Development of a Method to Reproduce Highly Dynamic Force Distance Based Intrusions of Vehicle Side Structure Components

2015-04-14
2015-01-1487
Structural component testing is essential for the development process to have an early knowledge of the real world behaviour of critical structural components in crash load cases. The objective of this work is to show the development for a self-sufficient structural component test bench, which can be used for different side impact crash load cases and can reflect the dynamic behaviour, which current approaches are not able. An existing basic system is used, which includes pneumatic cylinders with a controlled hydraulic brake and was developed for non-structural deformable applications only (mainly occupant assessments). The system is extended with a force-distance control. The method contains the analysis of a whole vehicle FEM simulation to develop a methodology for controlled force transmission with the pneumatic cylinders for a structural component test bench.
Technical Paper

Gradient Effects on Drag Due to Boundary-Layer Suction in Automotive Wind Tunnels

2003-03-03
2003-01-0655
A region with floor boundary-layer suction upstream of the vehicle to remove the oncoming boundary layer is often used in automotive wind tunnels. These suction systems inevitably change the empty-tunnel pressure gradient. In this paper, the empty-tunnel pressure gradient created by the use of boundary layer suction and its effect on measured drag are investigated. By using excess suction - more suction than necessary to remove the floor boundary layer – it was possible to show experimentally that the major part of the drag increase due to boundary layer suction is created by unintended gradient effects. Only a minor part of the drag increase is due to the increased flow velocities at the lower parts of the vehicle, or in other words, due to the improved ground simulation. A theoretical model, using the concept of horizontal buoyancy to predict the gradient effect, is proposed. The model is compared to the experimental results as well as to CFD calculations.
Technical Paper

Hardware Based Paravirtualization: Simplifying the Co-Hosting of Legacy Code for Mixed Criticality Applications

2013-04-08
2013-01-0186
The increased pressure for power, space, and cost reduction in automotive applications together with the availability of high performance, automotive qualified multicore microcontrollers has lead to the ability to engineer Domain Controller ECUs that can host several separate applications in parallel. The standard automotive constraints however still apply, such as use of AUTOSAR operating system, support for legacy code, hosting OEM supplied code and the ability to determine warranty issues and responsibilities between a group of Tier 1 and Tier 2 vendors who all provide Intellectual Property to the final production ECU. Requirements for safety relevant applications add even more complexity, which in most current approaches demand a reconfiguration of all basic software layers and a major effort to redesign parts of the application code to enable co-existence on the same hardware platform. This paper outlines the conflicting requirements of hosting multiple applications.
Technical Paper

Helmholtz Resonators Acting as Sound Source in Automotive Aeroacoustics

2009-04-20
2009-01-0183
Helmholtz-resonators are discussed in technical acoustics normally in conjunction with attenuation of sound, not with amplification or even production of sound. On the other hand everybody knows the sound produced by a bottle, when someone blows over the orifice. During the investigation of the sound produced in body gaps it was found that the underlying flow physics are closely related to the Helmholtz-resonator. But different from the typical Helmholtz-resonator generated noise – as for example the blown bottle or, from the automotive world, the sun roof buffeting – there is no fluid resonance involved in the process. For body gaps the random pressure fluctuation of the turbulent boundary layer is sufficient to excite the acoustic resonance in the cavity. The sound generation is characterized by a continuous rise in sound pressure level with increasing velocity, the rise is proportional to U with varying exponents.
Technical Paper

Implementing Mixed Criticality Software Integration on Multicore - A Cost Model and the Lessons Learned

2015-04-14
2015-01-0266
The German funded project ARAMiS included work on several demonstrators one of which was a multicore approach on large scale software integration (LSSI) for the automotive domain. Here BMW and Audi intentionally implemented two different integration platforms to gain both experience and real life data on a Hypervisor based concept on one side as well as using only native AUTOSAR-based methods on the other side for later comparison. The idea was to obtain figures on the added overhead both for multicore as well as safety, based on practical work and close-to-production implementations. During implementation and evaluation on one hand there were a lot of valuable lessons learned about multicore in conjunction with safety. On the other hand valuable information was gathered to make it finally possible to set up a cost model for estimation of potential overhead generated by different integration approaches for safety related software functions.
Journal Article

Influence of Rubber Temperature on Transfer Functions of Bushings

2015-12-01
2015-01-9115
In ride comfort as well as driving dynamics, the behavior of the vehicle is affected by several subsystems and their properties. When analyzing the suspension, especially the characteristics of the main spring and damper but also rubber bushings are of main importance. Still, the properties of the different components are dependent on the present operating conditions. Concerning rubber bushings, several effects have already been investigated, e.g. dependencies of the transfer function of frequency, amplitude or load history. In this context influences of changes in temperature are often neglected. However, in the following research, the focus specifically lies on determination and analysis of the temperature dependency of rubber bushings. For this purpose, initially the relationship between properties of pure rubber and rubber bushings is described, which serves as a basis for correlating respective temperature dependencies.
Journal Article

Obtaining Diagnostic Coverage Metrics Using Rapid Prototyping of Multicore Systems

2011-04-12
2011-01-1007
With the introduction of the ISO26262 automotive safety standard there is a burden of proof to show that the processing elements in embedded microcontroller hardware are capable of supporting a certain diagnostic coverage level, depending on the required Automotive Safety Integrity Level (ASIL). The current mechanisms used to provide actual metrics of the Built-in Self Tests (BIST) and Lock Step comparators use Register Transfer Level (RTL) simulations of the internal processing elements which force faults into individual nodes of the design and collect diagnostic coverage results. Although this mechanism is robust, it can only be performed by semiconductor suppliers and is costly. This paper describes a new solution whereby the microcontroller is synthesized into a large Field Programmable Gate Array (FPGA) with a test controller on the outside.
Technical Paper

Presenting a Fourier-Based Air Path Model for Real-Time Capable Engine Simulation Enhanced by a Semi-Physical NO-Emission Model with a High Degree of Predictability

2016-10-17
2016-01-2231
Longitudinal models are used to evaluate different vehicle-engine concepts with respect to driving behavior and emissions. The engine is generally map-based. An explicit calculation of both fluid dynamics inside the engine air path and cylinder combustion is not considered due to long computing times. Particularly for dynamic certification cycles (WLTC, US06 etc.), dynamic engine effects severely influence the quality of results. Hence, an evaluation of transient engine behavior with map-based engine models is restricted to a certain extent. The coupling of detailed 1D-engine models is an alternative, which rapidly increases the model computation time to approximately 300 times higher than that of real time. In many technical areas, the Fourier transformation (FT) method is applied, which makes it possible to represent superimposed oscillations by their sinusoidal harmonic oscillations of different orders.
X