Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Dynamic Substructuring for Sources Contributions Analysis in Internal Combustion Engines

2016-06-15
2016-01-1761
For vibration and acoustics vehicle development, one of the main challenges is the identification and the analysis of the noise sources, which is required in order to increase the driving comfort and to meet the stringent legislative requirements for the vehicle noise emission. Transfer Path Analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. This technique is commonly applied on test measurements, based on prototypes, at the end of the design process. In order to apply such methodology already within the design process, a contribution analysis method based on dynamic substructuring of a multibody system is proposed with the aim of improving the quality of the design process for vehicle NVH assessment and to shorten development time and cost.
Technical Paper

Hybrid Vehicle’s NVH Challenges and Influences on the NVH Development

2016-06-15
2016-01-1837
Due to more stringent emission regulation, especially plug-in hybrid vehicles have an increased attractiveness for OEMs to reduce OEM’s CO2 fleet emission. Generally, hybrid vehicles have a much higher complexity than conventional vehicles. This gives an additional degree of freedom for the development but also increases the number of potential NVH topics dramatically. Therefore, the role of frontloading and early prototype testing is getting even higher importance than in standard developments. Current hybrid vehicles on the market are mainly ICE vehicles with electric boosting or starting functionality only. This however will not be sufficient to fulfill the OEM’s CO2 fleet emission requirements. Future hybrid vehicles will have much higher electrical capabilities and drive much more in pure electric modes. Therefore, the more frequent change between the different driving modes and the related mode transitions will lead to a more complex interior NVH situation.
Technical Paper

Numerical Investigation in a Gear Drive of an Engine Balancing Unit with Respect to Noise, Friction and Durability

2015-09-06
2015-24-2526
This paper presents a methodology for numerical investigation of a full flexible balancer drive together with engine and crank train under realistic operating conditions where shaft dynamics, gear contact and rattle impacts, gear root stresses and friction losses in bearings and gear interaction are taken into account and can be balanced against each other to achieve the design criteria. Gear rattle is driven by the speed fluctuation of the crank train, the resistance torque (mainly friction), shaft inertia and the backlash in the gears. The actual trend to engine downsizing and up-torqueing increases the severity to rattle as engines are running on higher combustion pressures. This increases torque and speed fluctuation, which makes the detailed investigation in this torque transfer even more demanding. A common method to reduce gear rattle is the usage of so-called scissors gears.
Technical Paper

PMSM Noise - Simulation Measurement Comparison

2018-06-13
2018-01-1552
Growing development of hybrid and fully electrical drives increases demand for accurate prediction of noise and vibration characteristic of electric and electronic components. This paper describes the numerical and experimental investigation of noise emission from PMSM electric machine as a one of the most important noise sources in electric vehicles. Structural and air borne noise is measured on e-machine test rig and used for calibration and validation of the numerical model. The electro-magnetic field in PMSM is simulated using finite volume method. Electro-magnetic forces are applied as excitation to the 3D FE model of e-machine, mounded on test frame. Material properties are tuned using results from experimental modal analysis including identification of orthotropic characteristic of stator laminated core, assembled together with coil and end winding. Structural vibrations are calculated by modal frequency response analysis and applied as excitation in air borne noise simulation.
Technical Paper

Performance Attributes for Root Cause Detection of Piston Induced Noise

2016-06-15
2016-01-1775
Modern powertrain noise investigation in the development process and during trouble shooting is a combination of experiment and simulation. In simulation in recent years main focus was set on model completeness, consideration of all excitation mechanisms and efficient and stabile numerical algorithms. By that the total response of the virtual powertrain is already comparable to the overall noise level of the real powertrain. Actual challenge is to trace back the overall response to its main excitation and noise generating mechanism as well as to their main driving parameters to support the engineer not only in reaching absolute values, but also to derive the root cause of a response or potential problem and to get hints on how to improve the specific behavior. Approaches by parameter sensitivity studies are time consuming and not unambiguous.
Technical Paper

Power Electronic Noise-Simulation Measurement Comparison

2019-06-05
2019-01-1451
A growing development of hybrid or fully electrical drives increases the demand for an accurate prediction of noise and vibration characteristics of electric and electronic components. This paper describes the numerical and experimental investigation of noise emissions from power electronics, as one of the new important noise sources in electric vehicles. The noise emitted from the printed circuit board (PCB) equipped with multi-layer ceramic capacitors (MLCC) is measured and used for the calibration and validation of numerical model. Material properties are tuned using results from experimental modal analysis, with special attention to the orthotropic characteristic of the PCB glass-reinforced epoxy laminate sheet (FR-4). Electroacoustic excitation is pre-calculated using an extension of schematic-based EMC simulation and applied to the structural model. Structural vibrations are calculated with a commercial FEM solver with the modal frequency response analysis.
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
This paper describes the simulation tool chain serving to design and optimize the transmission of an electric axle drive from concept to final design with respect to NVH. A two-stage transmission of an eAxle is designed from scratch by the initial layout of gears and shafts, including the optimization of gear micro geometry. After the shaft system and bearings are defined, the concept design of the transmission housing is evaluated with the help of a basic topology optimization regarding stiffness and certain eigenfrequencies. In the next step a fully flexible multi-body dynamic (MBD) and acoustic analysis of the transmission is performed using internally calculated excitations due to gear contact and bearing interaction with shaft and gear dynamics for the entire speed and load range. Critical operating conditions in terms of shaft dynamics, structure borne noise and noise radiation are evaluated and selected as target for optimization in the following steps.
X