Refine Your Search

Topic

Author

Search Results

Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

A 3D Linear Acoustic Network Representation of Mufflers with Perforated Elements and Sound Absorptive Material

2017-06-05
2017-01-1789
The acoustics of automotive intake and exhaust systems is typically modeled using linear acoustics or gas-dynamics simulation. These approaches are preferred during basic sound design in the early development stages due to their computational efficiency compared to complex 3D CFD and FEM solutions. The linear acoustic method reduces the component being modelled to an equivalent acoustic two-port transfer matrix which describes the acoustic characteristic of the muffler. Recently this method was used to create more detailed and more accurate models based on a network of 3D cells. As the typical automotive muffler includes perforated elements and sound absorptive material, this paper demonstrates the extension of the 3D linear acoustic network description of a muffler to include the aforementioned elements. The proposed method was then validated against experimental results from muffler systems with perforated elements and sound absorptive material.
Journal Article

A Hybrid Development Process for NVH Optimization and Sound Engineering Considering the Future Pass-by Homologation Demands

2016-11-08
2016-32-0043
Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
Technical Paper

A Software Tool for Noise Quality and Brand Sound Development

2001-04-30
2001-01-1573
For noise quality and brand sound design of passenger cars a unique software tool is currently used by our clients world-wide to evaluate and optimise the interior noise quality and brand sound aspects of passenger cars on an objective basis. The software tools AVL-VOICE and AVL-COMFORT are designed for the objective analysis of interior noise quality, for benchmarking, for the definition of noise quality targets and most important for effective vehicle sound engineering. With this tool, the target orientated implementation of the required interior noise quality or brand sound by predictable hardware modifications into passenger cars - for tailor made joy of driving - becomes feasible. The use of this tools is drastically reducing vehicle evaluation time and sound engineering effort when compared with traditional jury subjective evaluation methods and standard acoustic NVH optimisation procedures.
Technical Paper

Active Path Tracking - A Rapid Method for the Identification of Structure Borne Noise Paths in Vehicle Chassis

2001-04-30
2001-01-1470
The effective identification and control of powertrain structure borne harmonic noise is one key for achieving the desired noise pattern in a vehicle. Much work is being done in this field to refine and develop transfer path analysis techniques suitable for application at each stage of a vehicle development program. For vehicle application, transfer path analysis and source identification techniques are in use today with varying degrees of success and application complexity. Investigation tools which are fast, do not require extensive vehicle dismantling and yet provide reliable answers, are of great value to NVH and sound quality engineers. A novel Active Path Tracking (APT) method has been developed which is fast to apply and offers immediate practical confirmation of the contributions of all identified chassis transmission paths to the vehicle interior.
Technical Paper

Advanced CAE Methods for NVH Development of High-Speed Electric Axle

2020-09-30
2020-01-1501
The rate in the electrification of vehicles has risen in recent years. With intensified development more and more attention is paid to the noise and vibration in such vehicles especially from the EDU (Electric Drive Unit). In this paper the main NVH simulation process of a high-speed E-axle up to 30,000 rpm for premium class vehicle application is presented. The high speed, high-power density and lightweight design introduces new challenges. Benchmarking of different EDUs and vehicles leads to targets which can be used at the early stage of development as subsystem targets. This paper shows the CAE methodology which can be used to verify the design and guarantee the target achievement. Using CAE both source and structure can be optimized to improve the NVH behavior.
Technical Paper

Analytical Techniques for Engine Structure Using Prediction of Radiated Noise of Diesel Engine with Changing Combustion Excitation

2017-06-05
2017-01-1802
In the automotive industry, various simulation-based analysis methods have been suggested and applied to reduce the time and cost required to develop the engine structure to improve the NVH performance of powertrain. This simulation is helpful to set the engine design concept in the initial phase of the powertrain development schedules. However, when using the conventional simulation method with a uniformed force, the simulation results sometimes show different results than the test results. Therefore, in this paper, we propose a method for predicting the radiated noise level of a diesel engine using actual combustion excitation force. Based on the analytical radiated noise development target, we identify the major components of the engine that are beyond this development target by in the frequency range. The components of the problem found in this way are reflected in the engine design of the early development stage to shorten the development time.
Journal Article

CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis

2013-04-08
2013-01-1740
The need for significant reduction of fuel consumption and CO₂ emissions has become the major driver for development of new vehicle powertrains today. For the medium term, the majority of new vehicles will retain an internal combustion engine (ICE) in some form. The ICE may be the sole prime mover, part of a hybrid powertrain or even a range extender; in every case potential still exists for improvement in mechanical efficiency of the engine itself, through reduction of friction and of parasitic losses for auxiliary components. A comprehensive approach to mechanical efficiency starts with an analysis of the main contributions to engine friction, based on a measurement database of a wide range of production engines. Thus the areas with the highest potential for improvement are identified. For each area, different measures for friction reduction may be applicable with differing benefits.
Journal Article

Comprehensive Array Measurements of In-Car Sound Field in Magnitude and Phase for Active Sound Generation and Noise Control

2014-06-30
2014-01-2046
When employing in-car active sound generation (ASG) and active noise cancellation (ANC), the accurate knowledge of the vehicle interior sound pressure distribution in magnitude as well as phase is paramount. Revisiting the ANC concept, relevant boundary conditions in spatial sound fields will be addressed. Moreover, within this study the controllability and observability requirements in case of ASG and ANC were examined in detail. This investigation focuses on sound pressure measurements using a 24 channel microphone array at different heights near the head of the driver. A shaker at the firewall and four loudspeakers of an ordinary in-car sound system have been investigated in order to compare their sound fields. Measurements have been done for different numbers of passengers, with and without a dummy head and real person on the driver seat. Transfer functions have been determined with a log-swept sine technique.
Technical Paper

Coupling Node Reduction of a Synchronous Machine Using Multipoint-Constraints

2014-06-30
2014-01-2067
The noise vibration and harshness (NVH) simulation of electric machines becomes increasingly important due to the use of electric machines in vehicles. This paper describes a method to reduce the calculation time and required memory of the finite element NVH simulation of electrical machines. The stator of a synchronous electrical machine is modeled as a two-dimensional problem to reduce investigation effort. The electromagnetic forces acting on the stator are determined by FE-simulation in advance. Since these forces need to be transferred from the electromagnetic model to the structural model, a coupling algorithm is necessary. In order to reduce the number of nodes, which are involved in the coupling between the electromagnetic and structural model, multipoint constraints (MPC) are used to connect several coupling nodes to one new coupling node. For the definition of the new coupling nodes, the acting load is analyzed with a 2D-FFT.
Technical Paper

Cylinder- and Cycle Resolved Particle Formation Evaluation to Support GDI Engine Development for Euro 6 Targets

2011-09-11
2011-24-0206
Combustion of premixed stoichiometric charge is free of soot particle formation. Consequently, the development of direct injection (DI) spark ignition (SI) engines aims at providing premixed charge to avoid or minimize soot formation in order to meet particle emissions targets. Engine development methods not only need precise engine-out particle measurement instrumentation but also sensors and measurement techniques which enable identification of in-cylinder soot formation sources under all relevant engine test conditions. Such identification is made possible by recording flame radiation signals and with analysis of such signals for premixed and diffusion flame signatures. This paper presents measurement techniques and analysis methods under normal engine and vehicle test procedures to minimize sooting combustion modes in transient engine operation.
Technical Paper

Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems

2011-05-17
2011-01-1526
The acoustic simulation of internal combustion engine exhaust systems is an important aspect to meet customer expectations and legislation targets. One dimensional gas dynamic simulation tools are used for the calculation of the exhaust orifice noise in the early stages of the engine development process. This includes the prediction of the acoustic performance of individual components in the exhaust line. One common element used in exhaust systems to increase the acoustic damping is the plug flow muffler. This study looks at the prediction of acoustic performance of various plug mufflers at different flow velocities. These include a single plug muffler, a double plug muffler and an eccentric plug muffler with different porosities for the perforated sections. To this purpose a generic 3D cell approach was developed and applied.
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Technical Paper

Dynamic Substructuring for Sources Contributions Analysis in Internal Combustion Engines

2016-06-15
2016-01-1761
For vibration and acoustics vehicle development, one of the main challenges is the identification and the analysis of the noise sources, which is required in order to increase the driving comfort and to meet the stringent legislative requirements for the vehicle noise emission. Transfer Path Analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. This technique is commonly applied on test measurements, based on prototypes, at the end of the design process. In order to apply such methodology already within the design process, a contribution analysis method based on dynamic substructuring of a multibody system is proposed with the aim of improving the quality of the design process for vehicle NVH assessment and to shorten development time and cost.
Technical Paper

Effects of Pulsating Flow on Exhaust Port Flow Coefficients

1999-03-01
1999-01-0214
Five very different exhaust ports of diesel and gasoline engines are investigated under steady and unsteady flow to determine whether their flow coefficients are sensitive to unsteady flow. Valve lift is fixed for a specific test but varied from test to test to determine whether the relationship between steady and unsteady flow is lift dependent. The pulse frequency is chosen to correspond to the blow-down phase of an engine running at approximately 6000 rpm, but the pressure drop across the port is much smaller than that present in a running engine. Air at room temperature is used as the working fluid. It is shown that unsteady flow through the five exhaust ports causes, at most, a 6% increase or a 7% decrease in flow coefficient.
Technical Paper

Experimental Design for Characterization of Force Transmissibility through Bearings in Electric Machines and Transmissions

2018-06-13
2018-01-1473
With the increasing stringent emissions legislation on ICEs, alongside requirements for enhanced fuel efficiency as key driving factors for many OEMs, there are many research activities supported by the automotive industry that focus on the development of hybrid and pure EVs. This change in direction from engine downsizing to the use of electric motors presents many new challenges concerning NVH performance, durability and component life. This paper presents the development of experimental methodology into the measurement of NVH characteristics in these new powertrains, thus characterizing the structure borne noise transmissibility through the shaft and the bearing to the housing. A feasibility study and design of a new system level test rig have been conducted to allow for sinusoidal radial loading of the shaft, which is synchronized with the shaft’s rotary frequency under high-speed transient conditions in order to evaluate the phenomena in the system.
Technical Paper

Gear Whine Noise Investigation of a Bus Rear Axle - Todays Possibilities and Outlook

2017-06-05
2017-01-1820
This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi-Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain - includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
Technical Paper

HEV Evaluation in Simulation Phase Based on Predicted Sound Behavior

2020-09-30
2020-01-1511
Grown interest in complex modern Hybrid Electric Vehicle (HEV) concepts has raised new challenges in the field of NVH. The switch between the Internal Combustion Engine (ICE) and the Electric Motor (EM) at low speeds produces undesirable vibrations and a sudden raise of noise levels that effects the sound quality and passenger comfort achieved by the close-to-silent electric powertrain operation. Starting the ICE in the most suitable driving situation to create a seamless transition between driving modes can be the key to minimize the NVH quality impact in driver and passenger’s perception in HEVs. To integrate this important aspect in the early stages of the development and design phase, simulation technologies can be used to address the customer acceptance. By analyzing NVH measurements, the different noise components of the vehicle operation can be separated into ICE-related noise, EM-related noise and driving noise.
Technical Paper

Hybrid Vehicle’s NVH Challenges and Influences on the NVH Development

2016-06-15
2016-01-1837
Due to more stringent emission regulation, especially plug-in hybrid vehicles have an increased attractiveness for OEMs to reduce OEM’s CO2 fleet emission. Generally, hybrid vehicles have a much higher complexity than conventional vehicles. This gives an additional degree of freedom for the development but also increases the number of potential NVH topics dramatically. Therefore, the role of frontloading and early prototype testing is getting even higher importance than in standard developments. Current hybrid vehicles on the market are mainly ICE vehicles with electric boosting or starting functionality only. This however will not be sufficient to fulfill the OEM’s CO2 fleet emission requirements. Future hybrid vehicles will have much higher electrical capabilities and drive much more in pure electric modes. Therefore, the more frequent change between the different driving modes and the related mode transitions will lead to a more complex interior NVH situation.
Technical Paper

Influence of Low-Frequency Powertrain-Vibrations on Driveability-Assessments

2010-06-09
2010-01-1419
Cost- and time-efficient vehicle development is increasingly depending on the usage of adequate software tools to enhance effectiveness. The aim is a continuous integration of simulation tools and test environments within the vehicle development process in order to save time and costs. This paper introduces a procedure to reveal the cause of low-frequency powertrain vibrations and the influences on the dynamic behavior of a vehicle on a roller test bench. The affected longitudinal acceleration signal is an arbitrative criterion for the driveability assessment with AVL-DRIVE™, a well-known driveability analysis and development tool for the objective assessment concerning NVH and driveability aspects of full vehicles. These experimental studies are embedded into an approach, which describes the functional assembly of three applied test environments "road," "roller test bench" and "simulation" with according tools in order to facilitate an integrated driveability development process.
X