Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Tomographic Camera System for Combustion Diagnostics in SI Engines

1995-02-01
950681
In order to facilitate the analysis of SI engine combustion phenomena, we have developed a fiber optic system which allows the observation of combustion in essentially standard engines. Optical access to the combustion chamber is achieved with micro-optic elements and optical fibers in the cylinder head gasket. Each fiber views a narrow cone of the combustion chamber and transmits the light seen within this acceptance cone to the detector and recorder unit. A large number of such fiber optic detectors have been incorporated in a cylinder head gasket and this multichannel system was arranged in a geometric configuration which allowed the reconstruction of the spatial flame intensity distribution within the observed combustion chamber cross-section. The spatial information was gained from the line-of-sight intensity signals by means of a tomographic reconstruction technique.
Technical Paper

AVL Spectros - a Concept for Lightweight Modular Engine Design

2000-03-06
2000-01-0672
The AVL Spectros engine is a version of a potential engine family concept and an example of lightweight and modular design. The model shown and described in detail is a powerful V8 spark-ignited engine developed for the sporty limousine called I.DE.A One. The design objectives were high power density, compact overall dimensions and enhanced efficiency. These objectives have been achieved by means of downsizing, lightweight design, direct injection with exhaust gas turbo-charging and modular heat management system. One of the design targets was to match the design of the engine compartment with the outer appearance of the I.DE.A One vehicle. This was achieved by the integration of all tubes and cables in modules and the conscious avoidance of covers. The starter-alternator concept allows almost all secondary systems to be powered electrically and thus to omit any auxiliary belt drives.
Technical Paper

About Describing the Knocking Combustion in Gasoline and Gas Engines by CFD Methods

2015-09-01
2015-01-1911
Spark ignited engines are today operated more and more often under high load conditions, where one reason can be identified in the necessity of increasing the efficiency and hence reducing fuel consumption and specific CO2 emissions. Since the gasoline engine operation is inherently limited by knocking at high loads, strategies must be identified, which allow reliable identification and simulation of the appearance of this undesirable type of combustion. A new numerical model for the description of those kinds of pre-flame reactions in a CFD framework is discussed in this paper. Despite emphasis is put here on the auto-ignition effects, it will also be explained that the model is capable of supporting the engine development process in all combustion and emission related aspects.
Technical Paper

Design Of SI Engines In Regard To Volume Production Beyond Year 2000

1999-03-01
1999-01-0327
The principal engine used in passenger cars is, and in the foreseeable future will be, the SI Engine. This paper summarizes AVL's experience in developing SI Engines for these vehicles. Special attention is given to the new targets of SI Engine development and the resulting design strategies during the concept phase of new engine families. The new modular concept of engine families includes a broad range of different engine designs like three to five cylinder inline and six to ten cylinder V-block engines, direct injection or fully variable valve actuation. It is shown that the design of central engine components, for example, that of the cylinder head, can be adapted for the different SI valve-train concepts by simply switching specific modular components.
Technical Paper

Ethanol Direct Injection on Turbocharged SI Engines - Potential and Challenges

2007-04-16
2007-01-1408
In the past application of alternative fuels was mostly concentrated to special markets - e.g. for ethanol and ethanol blends Brazil or Sweden. Now an increasing sensitivity towards dependency on crude oil significantly enhances the interest in alternative fuels. With spark ignited engines, ethanol and gasoline / ethanol blends are the most promising alternative fuels - besides CNG. The high octane number of ethanol and the resulting excellent knock performance gives significant benefits, especially with highly boosted engines. However, the evaporation characteristics of ethanol result in challenges regarding cold start and oil dilution with GDI application. This paper deals with investigations on a turbocharged DI engine operated on ethanol fuel in order to improve challenges of ethanol fuel, such as oil dilution and cold start. Cold start can be improved by injecting fuel late in the compression stroke (high pressure start) based on a refined engine design and operation strategies.
Technical Paper

Flame Visualisation in Standard SI-Engines - Results of a Tomographic Combustion Analysis

1997-02-24
970870
An optical sensor system provides access to standard SI engine combustion chambers via the cylinder head gasket. Flame radiation within the plane of the gasket is observed with optical fibers which are arranged to allow the tomographic reconstruction of flame distribution. The effect of convective in-cylinder air motion generated by variations of inlet ports and combustion chamber geometries on flame propagation is directly visible. A high degree of correlation between flame intensity distribution and NOx emission levels yields a useful assessment of combustion chamber configurations with minimum emission levels. The location of knock centers is identified.
Technical Paper

Gasoline DI Engines: The Complete System Approach By Interaction of Advanced Development Tools

1998-02-23
980492
Gasoline direct injection is one of the main issues of actual worldwide SI engine development activities. It requires a comprehensive system approach from the basic considerations on optimum combustion system configuration up to vehicle performance and driveability. The general characteristics of currently favored combustion system configurations are discussed in this paper regarding both engine operation and design aspects. The engine performance, especially power output and emission potential of AVL's DGI engine concept is presented including the interaction of advanced tools like optical diagnostics and 3D-CFD simulation in the combustion system development process. The application of methods like tomographic combustion analysis for investigations in the multicylinder engine within further stages of development is demonstrated. The system layout and operational strategies for fuel economy in conjunction with exhaust gas aftertreatment requirements are discussed.
Technical Paper

Gasoline Direct Injection: Actual Trends and Future Strategies for Injection and Combustion Systems

1996-02-01
960465
Recent developments have raised increased interest on the concept of gasoline direct injection as the most promising future strategy for fuel economy improvement of SI engines. The general requirements for mixture preparation and combustion systems in a GDI engine are presented in view of known and actual systems regarding fuel economy and emission potential. The characteristics of the actually favored injection systems are discussed and guidelines for the development of appropriate combustion systems are derived. The differences between such mixture preparation strategies as air distributed fuel and fuel wall impingement are discussed, leading to the alternative approach to the problem of mixture preparation with the fully air distributing concept of direct mixture injection.
Technical Paper

Methodology and Tools to Predict GDI Injector Tip Wetting as Predecessor of Tip Sooting

2018-04-03
2018-01-0286
With upcoming emission regulations particle emissions for GDI engines are challenging engine and injector developers. Despite the introduction of GPFs, engine-out emission should be optimized to avoid extra cost and exhaust backpressure. Engine tests with a state of the art Miller GDI engine showed up to 200% increased particle emissions over the test duration due to injector deposit related diffusion flames. No spray altering deposits have been found inside the injector nozzle. To optimize this tip sooting behavior a tool chain is presented which involves injector multiphase simulations, a spray simulation coupled with a wallfilm model and testing. First the flow inside the injector is analyzed based on a 3D-XRay model. The next step is a Lagrangian spray simulation coupled with a wallfilm module which is used to simulate the fuel impingement on the injector tip and counter-bores.
Technical Paper

Production Feasible DME Technology for Direct Injection CI Engines

2001-05-07
2001-01-2015
DiMethyl Ether (DME) has been shown to be a very attractive fuel for low emission direct injection compression ignition (DICI) engines. It combines the advantages of the high efficiencies of diesel cycle engines with soot free combustion. However, its greatest drawback is the need to develop new fuel injection and handling systems. Previous approaches have been common rail type injection systems which have shown great potential in reducing harmful exhaust emissions and achieving good engine performance and efficiency due to good control of both the fuel injection characteristics and temperature. The concept also has proven benefits with respect to convenient and safe fuel handling. The logical evolution of this concept simplifies the fuel system and avoids special components for DME handling such as high pressure rail pumps while retaining all the benefits of the common rail principle.
Technical Paper

SI Engine Combustion and Knock Modelling Using Detailed Fuel Surrogate Models and Tabulated Chemistry

2019-04-02
2019-01-0205
In the context of today’s and future legislative requirements for NOx and soot particle emissions as well as today’s market trends for further efficiency gains in gasoline engines, computational fluid dynamics (CFD) models need to further improve their intrinsic predictive capability to fulfill OEM needs towards the future. Improving fuel chemistry modelling, knock predictions and the modelling of the interaction between the chemistry and turbulent flow are three key challenges to improve the predictivity of CFD simulations of Spark-Ignited (SI) engines. The Flamelet Generated Manifold (FGM) combustion modelling approach addresses these challenges. By using chemistry pre-tabulation technologies, today’s most detailed fuel chemistry models can be included in the CFD simulation. This allows a much more refined description of auto-ignition delays for knock as well as radical concentrations which feed into emission models, at comparable or even reduced overall CFD run-time.
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

2012-04-16
2012-01-0443
Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Technical Paper

TC GDI Engines at Very High Power Density — Irregular Combustion and Thermal Risk

2009-09-13
2009-24-0056
Gasoline direct injection and turbocharging enable the progress of clean and fuel efficient SI engines. Accessing potential efficiency benefits requires very high power density to be achieved across a broad rpm range. This imposes risks which in conventional engines are rarely met. However, at torque levels exceeding 25 bar BMEP, the thermal in-cylinder conditions together with chemical reactivity of any ignitable matter, require major efforts in combustion system development. The paper presents a methodology to identify and locate sporadic self ignition events and it demonstrates non contact surface temperature measurement techniques for in-cylinder and exhaust system components.
Technical Paper

Technology Features and Development Methods for Spark Ignited Powertrain to Meet 2020 CO2 Emission Targets

2013-10-07
2013-36-0438
For achieving the forthcoming CO2 emission targets of 95g/km by 2020 and for the years beyond, comprehensive activities for powertrain technology as well as development methodology has to be utilized. It will by far not be enough to add a few single technology features to achieve the desired result. More and more the success will result from comprehensive combining of synergetic utilization of complementary effects. This will be the powertrain perfectly matched to the vehicle, including the energy source, and all together integrated by means of advanced development tools and methodology.
Technical Paper

VVT+Port Deactivation Application on a Small Displacement SI 4 Cylinder 16V Engine: An Effective Way to Reduce Vehicle Fuel Consumption

2003-03-03
2003-01-0020
During recent years several VVT devices have been developed, in order to improve either peak power and low end torque, or part load fuel consumption of SI engines. This paper describes an experimental activity, concerning the integration of a continuously variable cam phaser (CVCP), together with an intake port deactivation device, on a small 4 cylinder 16V engine. The target was to achieve significantly lower fuel consumption under normal driving conditions, compared to a standard MPFI application. A single hydraulic cam phaser is used to shift both the intake and the exhaust cams to retarded positions, at constant overlap. Thus, high EGR rates in the combustion chamber and late intake valve closure (“reverse Miller cycle”) are combined, in order to reduce pumping losses at part load.
Technical Paper

Ways to Meet Future Emission Standards with Diesel Engine Powered Sport Utility Vehicles (SUV)

2000-03-06
2000-01-0181
The paper reports on the outcome of a still on-going joint-research project with the objective of establishing a demonstrator high speed direct injection (HSDI) diesel engine in a Sport Utility Vehicle (SUV) which allows to exploit the effectiveness of new engine and aftertreatment technologies for reducing exhaust emissions to future levels of US/EPA Tier 2 and Euro 4. This objective should be accomplished in three major steps: (1) reduce NOx by advanced engine technologies (cooled EGR, flexible high pressure common rail fuel injection system, adapted combustion system), (2) reduce particulates by the Continuous Regeneration Trap (CRT), and (3) reduce NOx further by a DeNOx aftertreatment technology. The current paper presents engine and vehicle results on step (1) and (2), and gives an outlook to step (3).
X