Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Combustion Behavior of Gasoline and Gasoline/Ethanol Blends in a Modern Direct-Injection 4-Cylinder Engine

2008-04-14
2008-01-0077
Early in 2007 President Bush announced in his State of the Union Address a plan to off-set 20% of gasoline with alternative fuels in the next ten years. Ethanol, due to its excellent fuel properties for example, high octane number, renewable character, etc., appears to be a favorable alternative fuel from an engine perspective. Replacing gasoline with ethanol without any additional measures results in unacceptable disadvantages mainly in terms of vehicle range. This paper summarizes combustion studies performed with gasoline as well as blends of gasoline and ethanol. These tests were performed on a modern, 4-cylinder spark ignition engine with direct fuel injection and exhaust gas recirculation. To evaluate the influence of blending on the combustion behavior the engine was operated on the base gasoline calibration. Cylinder pressure data taken during the testing allowed for detailed analysis of rates of heat release and combustion stability.
Journal Article

Development of a Supercharged Octane Number and a Supercharged Octane Index

2023-04-11
2023-01-0251
Gasoline knock resistance is characterized by the Research and Motor Octane Number (RON and MON), which are rated on the CFR octane rating engine at naturally aspirated conditions. However, modern automotive downsized boosted spark ignition (SI) engines generally operate at higher cylinder pressures and lower temperatures relative to the RON and MON tests. Using the naturally aspirated RON and MON ratings, the octane index (OI) characterizes the knock resistance of gasolines under boosted operation by linearly extrapolating into boosted “beyond RON” conditions via RON, MON, and a linear regression K factor. Using OI solely based on naturally aspirated RON and MON tests to extrapolate into boosted conditions can lead to significant errors in predicting boosted knock resistance between gasolines due to non-linear changes in autoignition and knocking characteristics with increasing pressure conditions.
Technical Paper

Drive Cycle Analysis of Butanol/Diesel Blends in a Light-Duty Vehicle

2008-10-06
2008-01-2381
The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests. The results showed that for the urban drive cycle, both total hydrocarbon (THC) and carbon monoxide (CO) emissions increased as larger quantities of butanol were added to the diesel fuel.
Technical Paper

Effect of Injector Nozzle Finish on Performance and Emissions in a HSDI, Light-duty, Diesel Engine

2006-04-03
2006-01-0200
The purpose of this study was to determine the effect of injector nozzle hole size, shape, and finish on performance and emissions in a light-duty diesel engine. Two sets of six-hole valve covered orifice (VCO) nozzles were tested with nearly identical volumetric flow rates but varying geometry and finish. The 17% hydro-erosion (HE) nozzles had a 22% larger discharge coefficient (CD), compared to the 7% HE nozzles. In order to maintain similar volumetric flow rates, the orifice diameter of the 17% HE nozzles were reduced by almost 10%.The nozzles were tested in a 1.7L, four-cylinder, common rail diesel engine, operating on conventional D2 diesel fuel. The 17% HE, conical-shaped nozzles reduced fuel specific particulate matter (PM) and increased fuel specific oxides of nitrogen (NOx) emissions, over the 7% HE, straight-shaped nozzle.
Technical Paper

Emissions, Performance, and In-Cylinder Combustion Analysis in a Light-Duty Diesel Engine Operating on a Fischer-Tropsch, Biomass-to-Liquid Fuel

2005-10-24
2005-01-3670
SunDiesel™ is an alternative bio-fuel derived from wood chips that has certain properties that are superior to those of conventional diesel (D2). In this investigation, 100% SunDiesel was tested in a Mercedes A-Class (model year 1999), 1.7L, turbocharged, direct-injection diesel engine (EURO II) equipped with a common-rail injection system. By using an endoscope system, Argonne researchers collected in-cylinder visualization data to compare the engine combustion characteristics of the SunDiesel with those of D2. Measurements were made at one engine speed and load condition (2,500 rpm, 50% load) and four start-of-injection (SOI) points, because of a limited source of SunDiesel fuel. Significant differences in soot concentration, as measured by two-color optical pyrometry, were observed. The optical and cylinder pressure data clearly show significant differences in combustion duration and ignition delay between the two fuels.
Technical Paper

Engine Start Characteristics of Two Hybrid Electric Vehicles (HEVs) - Honda Insight and Toyota Prius

2001-08-20
2001-01-2492
Hybrid electric vehicles (HEVs) may have key fuel economy and emissions advantages over current conventional vehicles, but they have drawbacks such as frequent engine starts that can slow down market penetration of HEVs. First, the hydrocarbon emissions due to the numerous engine starts would make newly developed HEV powertrains even more demanding on the emission control system. Second, frequent starts may make the engine deteriorate quickly. This study is an attempt to gain a better understanding of the engine start characteristics of two limited-production HEVs (Toyota Prius and Honda Insight). Using fast-response (5 ms) hydrocarbon and NO (nitric oxide) analyzers, the transient emissions were measured in the engine exhaust ports during cold and hot engine starts. On the basis of the experimental findings, several recommendations were made to improve performance and emissions of future HEVs.
Technical Paper

The Effects of Blending Hydrogen with Methane on Engine Operation, Efficiency, and Emissions

2007-04-16
2007-01-0474
Hydrogen is considered one of the most promising future energy carriers and transportation fuels. Because of the lack of a hydrogen infrastructure and refueling stations, widespread introduction of vehicles powered by pure hydrogen is not likely in the near future. Blending hydrogen with methane could be one solution. Such blends take advantage of the unique combustion properties of hydrogen and, at the same time, reduce the demand for pure hydrogen. In this paper, the authors analyze the combustion properties of hydrogen/methane blends (5% and 20% methane [by volume] in hydrogen equal to 30% and 65% methane [by mass] in hydrogen) and compare them to those of pure hydrogen as a reference. The study confirms that only minor adjustments in spark timing and injection duration are necessary for an engine calibrated and tuned for operation on pure hydrogen to run on hydrogen/methane blends.
Technical Paper

The Prospects for Hybrid Electric Vehicles, 2005-2020: Results of a Delphi Study

1999-08-17
1999-01-2942
The introduction of Toyota's hybrid electric vehicle (HEV), the Prius, in Japan has generated considerable interest in HEV technology among U.S. automotive experts. In a follow-up survey to Argonne National Laboratory's two-stage Delphi Study on electric and hybrid electric vehicles (EVs and HEVs) during 1994-1996, Argonne researchers gathered the latest opinions of automotive experts on the future “top-selling” HEV attributes and costs. The experts predicted that HEVs would have a spark-ignition gasoline engine as a power plant in 2005 and a fuel cell power plant by 2020. The projected 2020 fuel shares were about equal for gasoline and hydrogen, with methanol a distant third. In 2020, HEVs are predicted to have series-drive, moderate battery-alone range and cost significantly more than conventional vehicles (CVs). The HEV is projected to cost 66% more than a $20,000 CV initially and 33% more by 2020.
X