Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Journal Article

A Metal Fibrous Filter for Diesel Hybrid Vehicles

2011-04-12
2011-01-0604
Trends towards lower vehicle fuel consumption and smaller environmental impact will increase the share of Diesel hybrids and Diesel Range Extended Vehicles (REV). Because of the Diesel engine presence and the ever tightening soot particle emissions, these vehicles will still require soot particle emissions control systems. Ceramic wall-flow monoliths are currently the key players in the Diesel Particulate Filter (DPF) market, offering certain advantages compared to other DPF technologies such as the metal based DPFs. The latter had, in the past, issues with respect to filtration efficiency, available filtration area and, sometimes, their manufacturing cost, the latter factor making them less attractive for most of the conventional Diesel engine powered vehicles. Nevertheless, metal substrate DPFs may find a better position in vehicles like Diesel hybrids and REVs in which high instant power consumption is readily offered enabling electrical filter regeneration.
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Technical Paper

An integrated 1D/3D workflow for analysis and optimization of injection parameters of a diesel engine

2001-09-23
2001-24-0004
The present contribution gives an overview of the use of different simulation tools for the optimization of injection parameters of a diesel engine. With a one-dimensional tool, the behavior of the mechanics and fluid dynamics of the entire injection system is calculated. This simulation provides information on the dynamic needle lift, injection rates, pressures, etc. The flow within the injector is simulated using a three-dimensional CFD tool. By use of a two-phase model, it is possible to analyze the cavitating flow inside the injector and to calculate the effective nozzle hole area as well as the exit flow characteristics. Mixture formation, combustion and pollutant formation simulation is performed adopting three-dimensional CFD. In order to provide the initial and boundary conditions for the engine CFD simulation and to optimize the engine cycle performance a one-dimensional tool is adopted.
Journal Article

Application of the Wave Based Technique to Predict the Engine Noise Radiation Under Anechoic Conditions

2009-05-19
2009-01-2211
As an alternative to the element based methods, recently a wave based technique (WBT) has been developed. Since it is based on the indirect Trefftz approach, exact solutions of the governing differential equation are used to approximate the dynamic field variables. This paper discusses the extensions of the WBT for the analysis of engine noise radiation problems in 3 dimensions under anechoic conditions. Furthermore, necessary extensions of shape functions, numerical integration and a methodology to create a WBT radiation models are described. The performance of the method compared to a commercial BEM solution is demonstrated with a real engine example.
Technical Paper

Automated Model-Based Calibration for Drivability Using a Virtual Engine Test Cell

2015-04-14
2015-01-1628
Increasing powertrain complexity and the growing number of vehicle variants are putting a strain on current calibration development processes. This is particularly challenging for vehicle drivability calibration, which is traditionally completed late in the development cycle, only after mature vehicle hardware is available. Model-based calibration enables a shift in development tasks from the real world to the virtual world, allowing for increased system robustness while reducing development costs and time. A unique approach for drivability calibration was developed by incorporating drivability analysis software with online optimization software into a virtual engine test cell environment. Real-time, physics-based engine and vehicle simulation models were coupled with real engine controller hardware and software to execute automated drivability calibration within this environment.
Technical Paper

CSI - Controlled Auto Ignition - the Best Solution for the Fuel Consumption - Versus Emission Trade-Off?

2003-03-03
2003-01-0754
In recent years several new gasoline engine technologies were introduced in order to reduce fuel consumption. Controlled autoignition seems to be an alternative to stratified part load operation, which is handicapped due to it's lean aftertreatment system for world wide application. The principal advantages of controlled auto ignition combustion under steady state operation - combining fuel economy benefits similar to stratified charge systems with nearly negligible NOx and soot emissions - are already well known. With the newly developed AVL- CSI system (Compression and Spark Ignition), a precise combustion control is achieved even under transient operation. For compensation of production and operation tolerances a cost optimized cylinder individual control was developed. Completely new functionalities of the engine management system are applied. This lean GDI concept complies with future emission standards without DeNOx catalyst and can be applied worldwide.
Technical Paper

Can the Technology for Heavy Duty Diesel Engines be Common for Future Emission Regulations in USA, Japan and Europe?

2003-03-03
2003-01-0344
Exhaust emission legislation world-wide have a common trend towards very low limits, measured for compliance in transient cycles specific for the United States, Japan and Europe. The emission development strategy is focussing on lowest engine-out emissions to require a minimum of exhaust gas aftertreatment. The base engine concept is described and test results, complying with Euro 4, are shown. The emission reduction development for future regulations requires exhaust gas aftertreatment, test results are shown for US 2007, JNLTR and Euro 5. With exhaust gas aftertreatment, discussed in the appendix, the engine development is faced with a big challenge to ensure the minimum exhaust gas temperature required for their proper function.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
Technical Paper

Comparison of Particle Number Measurements from the Full Dilution Tunnel, the Tailpipe and Two Partial Flow Systems

2010-04-12
2010-01-1299
The regulation of particle number (PN) has been introduced in the Euro 5/6 light-duty vehicle legislation, as a result of the light duty inter-laboratory exercise of the Particle Measurement Program (PMP). The heavy-duty inter-laboratory exercise investigates whether the same or a similar procedure can be applied to the heavy-duty regulation. In the heavy-duty exercise two "golden" PN systems sample simultaneously; the first from the full dilution tunnel and the second from the partial flow system. One of the targets of the exercise is to compare the PN results from the two systems. In this study we follow a different approach: We use a PMP compliant system at different positions (full flow, partial flow and tailpipe) and we compare its emissions with a "reference" system always sampling from the full flow dilution tunnel.
Technical Paper

Cylinder- and Cycle Resolved Particle Formation Evaluation to Support GDI Engine Development for Euro 6 Targets

2011-09-11
2011-24-0206
Combustion of premixed stoichiometric charge is free of soot particle formation. Consequently, the development of direct injection (DI) spark ignition (SI) engines aims at providing premixed charge to avoid or minimize soot formation in order to meet particle emissions targets. Engine development methods not only need precise engine-out particle measurement instrumentation but also sensors and measurement techniques which enable identification of in-cylinder soot formation sources under all relevant engine test conditions. Such identification is made possible by recording flame radiation signals and with analysis of such signals for premixed and diffusion flame signatures. This paper presents measurement techniques and analysis methods under normal engine and vehicle test procedures to minimize sooting combustion modes in transient engine operation.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Technical Paper

Diesel Particulate Measurement with Partial Flow Sampling: Systems A New Probe and Tunnel Design that Correlates with Full Flow Tunnels

2002-03-04
2002-01-0054
Partial flow sampling methods in emissions testing are interesting and preferred because of their lower cost, smaller size and applicability to engines of all sizes. However the agreement of the results obtained with instruments based on this method to those obtained with the traditional, large tunnel full flow sampling systems needs to be achieved, and the factors of construction that influence this agreement must be understood. These issues have received more attention lately in connection with ISO and WHDC standardization efforts underway to achieve a world-wide harmony in the sampling methods for heavy duty diesel engines, and with the introduction of similar Bag-minidiluter techniques into light duty SULEV gaseous pollutant measurement. This paper presents the theory and practice of a partial flow probe and tunnel design that addresses and minimizes the undesirable effects of the necessary differences between the two sampling methods.
Technical Paper

Engineering Vehicle Sound Quality

1997-05-20
972063
The characteristically good fuel economy of the high speed direct injection diesel engine has led to increased market share as the power unit of passenger cars. This trend is particularly true in Europe and, if not halted prematurely by emissions legislation, is likely to continue. However, another characteristic of the high speed DI engine is increased noise and vibration over its gasoline counterpart. This has meant that additional noise and vibration measures are required in order to approach the competitive refinement levels of gasoline engine installations. This paper considers some of the characteristic diesel engine noise and vibration problems associated with vehicle installation and passenger comfort. The paper also discusses subjective and objective assessment and considers approaches to engineering more desirable sound quality.
Technical Paper

Estimation of Diesel Soot Particles in Exhaust Gas Emission and Its Accumulation in Diesel Particulate Filter Using Graphical Calculation Model

2021-09-22
2021-26-0195
To avoid frequent regeneration intervals leading to expeditious ageing of the catalyst and substantial fuel penalty for the owner, it is always desired to estimate the soot coming from diesel exhaust emission, the soot accumulated and burnt in the Diesel Particulate Filter (DPF). Certain applications and vehicle duty cycles cannot make use of the differential pressure sensor for estimating the soot loading in the DPF because of the limitations of the sensor tolerance and measurement accuracy. The physical soot model is always active and hence a precise and more accurate model is preferred to calibrate & optimize the regeneration interval. This paper presents the approach to estimate the engine-out soot and the accumulated soot in the DPF using a graphical calculation tool (AVL Concerto CalcGraf™).
Technical Paper

Feasibility of Particulate Mass and Number Measurement with Portable Emission Measurement Systems (PEMS) for In-Use Testing

2011-09-11
2011-24-0199
Different particulate mass (PM) portable emission measurement systems (PEMS) were evaluated in the lab with three heavy-duty diesel engines which cover a wide range of particle emission levels. For the two engines without Diesel Particulate Filters (DPF) the proportional partial flow dilution systems SPC-472, OBS-TRPM, and micro-PSS measured 15% lower PM than the full dilution tunnel (CVS). The micro soot sensor (MSS), which measures soot in real time, measured 35% lower. For the DPF-equipped engine, where the emissions were in the order of 2 mg/kWh, the systems had differences from the CVS higher than 50%. For on-board testing a real-time sensor is necessary to convert the gravimetric (filter)-based PM to second-by-second mass emissions. The detection limit of the sensor, the particle property it measures (e.g., number, surface area or mass, volatiles or non-volatiles) and its calibration affect the estimated real-time mass emissions.
Technical Paper

Flame Visualisation in Standard SI-Engines - Results of a Tomographic Combustion Analysis

1997-02-24
970870
An optical sensor system provides access to standard SI engine combustion chambers via the cylinder head gasket. Flame radiation within the plane of the gasket is observed with optical fibers which are arranged to allow the tomographic reconstruction of flame distribution. The effect of convective in-cylinder air motion generated by variations of inlet ports and combustion chamber geometries on flame propagation is directly visible. A high degree of correlation between flame intensity distribution and NOx emission levels yields a useful assessment of combustion chamber configurations with minimum emission levels. The location of knock centers is identified.
Technical Paper

Gasoline DI Engines: The Complete System Approach By Interaction of Advanced Development Tools

1998-02-23
980492
Gasoline direct injection is one of the main issues of actual worldwide SI engine development activities. It requires a comprehensive system approach from the basic considerations on optimum combustion system configuration up to vehicle performance and driveability. The general characteristics of currently favored combustion system configurations are discussed in this paper regarding both engine operation and design aspects. The engine performance, especially power output and emission potential of AVL's DGI engine concept is presented including the interaction of advanced tools like optical diagnostics and 3D-CFD simulation in the combustion system development process. The application of methods like tomographic combustion analysis for investigations in the multicylinder engine within further stages of development is demonstrated. The system layout and operational strategies for fuel economy in conjunction with exhaust gas aftertreatment requirements are discussed.
Technical Paper

HD Base Engine Development to Meet Future Emission and Power Density Challenges of a DDI™ Engine

2007-10-30
2007-01-4225
This paper describes development challenges for Heavy-Duty (HD) on-highway Diesel Direct Injection (DDI™) engines to meet the extremely advanced US-EPA 2010 (later named US 2010) emission limits while further increasing power density in combination with competitive engine efficiency. It discusses technologies and solutions for lowest engine-out emissions in combination with most competitive fuel consumption values and excellent dynamic behavior. To achieve these challenging targets, base engine hardware requirements are described. In detail the development of EGR systems, especially the challenges of running high EGR rates over the whole engine speed range also at high load, the dynamic EGR control for transient engine operation to achieve lowest NOx emissions at the smoke limit with excellent load response is discussed. Also the effect of the turbo-machinery on power density and transient engine behavior is shown.
Journal Article

High Performance Cooling and EGR Systems as a Contribution to Meeting Future Emission Standards

2008-04-14
2008-01-1199
In relation to further tightening of the emissions legislation for on-road heavy duty Diesel engines, the future potential of cooled exhaust gas recirculation (EGR) as a result of developments in the cooling systems of such engines has been evaluated. Four basic engine concepts were investigated: an engine with SCR exhaust gas aftertreatment for control of the nitrogen oxides (NOx), an engine with cooled EGR and particulate (PM) filtration, an engine with low pressure EGR and PM filtration and an engine with two stage low temperature cooled EGR also with a particulate filter. A 10.5 litre engine was calibrated and tested under conditions representative for each concept, such that 1.7 g/kWh (1.3 g/bhp-hr) NOx could be achieved over the ESC and ETC. This corresponds to emissions 15% below the Euro 5 legislation level.
X