Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Analyzing Local Combustion Environment with a Flamelet Model and Detailed Chemistry

2012-04-16
2012-01-0150
Measurements have been done in order to obtain information concerning the effect of EGR for the smoke and NOx emissions of a heavy-duty diesel engine. Measured smoke number and NOx emissions are explained using detailed chemical kinetic calculations and CFD simulations. The local conditions in the research engine are analyzed by creating equivalence ratio - temperature (Phi-T) maps and analyzing the CFD results within these maps. The study uses different amounts of EGR and the standard EN590 diesel fuel. The detailed chemical kinetic calculations take into account the different EGR rates. The CFD calculations are made with a flamelet-based combustion model together with detailed chemistry. The results are compared to a previous study where a hybrid local flame area evolution model combined with an eddy breakup - type model was used in the CFD simulations.
Technical Paper

Effect of Alternative Fuels on Marine Engine Performance

2019-12-19
2019-01-2230
Marine transportation sector is highly dependent on fossil-based energy carriers. Decarbonization of shipping can be accomplished by implementing biobunkers into an existing maritime fuel supply chain. However, there are many compatibility issues when blending new biocomponents with their fossil-based counterparts. Thus, it is of high importance to predict the effect of fuel properties on marine engine performance, especially for new fuel blends. In the given work, possible future solutions concentrated on liquid fuels are taken into account. Under consideration are such fuels as biodiesel (FAME), hydrotreated vegetable oil (HVO), straight vegetable oil (SVO), pyrolysis oil, biocrude, and methanol. Knowledge about the behavior of new fuel in an existing engine is notably important for decision makers and fuel producers. Hence, the main goal of the present work is to create a model, which can predict the engine performance from the end-user perspective.
Technical Paper

Interaction of Multiple Fuel Sprays in a Heavy-Duty Diesel Engine

2011-04-12
2011-01-0841
This paper aims to study numerically the influence of the number of fuel sprays in a single-cylinder diesel engine on mixing and combustion. The CFD simulations are carried out for a heavy-duty diesel engine with an 8 hole injector in the standard configuration. The fuel spray mass-flow rate was obtained from 1D-simulations and has been adjusted according to the number of nozzle holes to keep the total injected fuel mass constant. Two cases concerning the modified mass-flow rate are studied. In the first case the injection time was decreased whereas in the second case the nozzle hole diameter was decreased. In both cases the amount of nozzle holes (i.e. fuel sprays) was increased in several steps to 18 holes. Quantitative analyses were performed for the local air-fuel ratio, homogeneity of mixture distribution, heat release rate and the resulting in-cylinder pressure.
Technical Paper

Studying Local Conditions in a Heavy-Duty Diesel Engine by Creating Phi-T Maps

2011-04-12
2011-01-0819
New measurements have been done in order to obtain information concerning the effect of EGR and a paraffinic hydrotreated fuel for the smoke and NO emissions of a heavy-duty diesel engine. Measured smoke number and NO emissions are explained using detailed chemical kinetic calculations and CFD simulations. The local conditions in the research engine are analyzed by creating equivalence ratio - temperature (Phi-T) maps and analyzing the CFD results within these maps. The study uses different amount of EGR and two different diesel fuels; standard EN590 diesel fuel and a paraffinic hydrotreated vegetable oil (HVO). The detailed chemical kinetic calculations take into account the different EGR rates and the properties of the fuels. The residence time in the kinetical calculations is used to explain sooting combustion behavior within diesel combustion. It was observed that NO emission trends can be well captured with the Phi-T maps but the situation is more difficult with the engine smoke.
X