Refine Your Search

Topic

Author

Search Results

Journal Article

A Cockpit Point of View on "Human Factors" for a Changing ATM Environment

2011-10-18
2011-01-2709
The vision of SESAR is to integrate and implement new technologies to improve air traffic management (ATM) performance. Enhanced automation and new separation modes characterize the future concept of operations, where the role of the human operator will remain central by integrating more managing and decision-making functions. The expected changes represent challenges for the human actors in the aircraft and on ground and must be taken into account during the development phase. Integrating the human in the ATM system development starting from the early design phase is a key factor for future acceptability. This paper describes the adaptation of currently applied Cockpit Human Factors processes in order to be able to design the aircraft for the future ATM environment.
Journal Article

A Model-based Solution to Robust and Early Detection of Control Surface Runaways

2011-10-18
2011-01-2803
This paper discusses the design of a model-based fault detection scheme for robust and early detection of runaways in aircraft control surfaces servo-loop. The proposed scheme can be embedded within the structure of in-service monitoring systems as a part of the Flight Control Computer (FCC) software. The final goal is to contribute to improve the performance detection of unanticipated runaway faulty profiles having very different dynamic behaviors, while retaining a perfect robustness. The paper discusses also the tradeoffs between adequacy of the technique and its implementation level, industrial validation process with Engineering support tools, as well as the tuning aspects. The proposed methodology is based on a combined data-driven and system-based approach using a dedicated Kalman filtering. The technique provides an effective method ensuring robustness and good performance (well-defined real-time characteristics and well-defined error rates).
Journal Article

A Vision Based Audit Method and Tool that Compares a Systems Installation on a Production Aircraft to the Original Digital Mock-Up

2011-10-18
2011-01-2565
The work describes a concept application to aid a safety engineer to perform an audit of a production aircraft against safety driven installation requirements. The capability is achieved using the following steps: A) Image capture of a product and measurement of distances between datum points within the product with/without references to a planar surface B) A digital reconstruction of the fabricated product by using multiple captured images to reposition parts according to the actual model. C) The projection onto the 3D digital reconstruction of the safety related installation constraints, respecting the original intent of the constraints that are defined in the digital mock-up.
Technical Paper

Advanced Diagnosis for Sustainable Flight Guidance and Control: The European ADDSAFE Project

2011-10-18
2011-01-2804
The state-of-practice for aircraft manufacturers to diagnose guidance & control faults and obtain full flight envelope protection at all times is to provide high levels of dissimilar hardware redundancy. This ensures sufficient available control action and allows performing coherency tests, cross and consistency checks, voting mechanisms and built-in test techniques of varying sophistication. This hardware-redundancy based fault detection and diagnosis (FDD) approach is nowadays the standard industrial practice and fits also into current aircraft certification processes while ensuring the highest level of safety standards. In the context of future “sustainable” aircraft (More Affordable, Smarter, Cleaner and Quieter), the Electrical Flight Control System (EFCS) design objectives, originating from structural loads design constraints, are becoming more and more stringent.
Technical Paper

Aeronautical Fuel Cell System Application and Associated Standardization Work

2006-11-07
2006-01-3093
Airbus is a leading aircraft manufacturer with the position as technology driver and a distinct customer orientation, broad commercial know-how and high production efficiencies. It is constantly working on further and new development of its products from ecological and economical points of view. Fuel Cell Systems (FCS) on board of an aircraft provide a good opportunity to address both aspects. Based on existing and upcoming research results it is necessary to find trend-setting measures for the industrial implementation and application of this technology. Past and current research efforts have shown good prospects for the industrial implementation and application of the fuel cell technology. Being an efficient source of primarily electric power the fuel cell would be most beneficial when used in conjunction with electrical systems.
Technical Paper

Airbus - EMAs for Flight Controls Actuation System - An Important Step Achieved in 2011

2011-10-18
2011-01-2732
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, “on board” maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Journal Article

Application of Model Based Functional Specification Methods to Environmental Control Systems Engineering

2011-10-18
2011-01-2504
The paper presents an innovative approach for the functional specification of complex and highly integrated aircraft control systems, such as the Environmental Control System (ECS), by applying model based specification methods. Complexity and effectiveness of modern ECS have significantly increased during the last few years along with development of new technologies and innovations in control engineering as well as digital data distribution and processing. Efficient management of cabin air flows on the one hand makes the ECS more energy-saving and on the other hand more complex with regard to its functionality and interaction with other interfaced aircraft systems. Numerous data interfaces to other systems and a high degree of automation are typical for a modern ECS. The aircraft manufacturer specifies the entire ECS functions and its interactions within the aircraft.
Technical Paper

Applying a Concept for Robot-Human Cooperation to Aerospace Equipping Processes

2011-10-18
2011-01-2655
Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process.
Technical Paper

Characterization of Hypervisors for Security-Enhanced Avionics Applications

2011-10-18
2011-01-2805
Traditionally, software in avionics has been totally separated from open-world software, in order to avoid any interaction that could corrupt critical on-board systems. However, new aircraft generations need more interaction with off-board systems to offer extended services, which makes these information flows potentially dangerous. In a previous work, we have proposed the use of virtualization to ensure dependability of critical applications despite bidirectional communication between critical on-board systems and untrusted off-board systems. We have developed a test bed to assess the performance impact induced by the use of virtualization. In this work, various configurations have been experimented that range from a basic machine without an OS up to the complete architecture featuring a hypervisor and an OS running in a virtual machine. Several tests (computation, memory, network) are carried out, and timing measures are collected on different hypervisors.
Technical Paper

Combination of Experimental and Computational Approaches to A320 Wing Assembly

2017-09-19
2017-01-2085
The paper is devoted to the simulation of A320 wing assembly on the base of numerical experiments carried out with the help of ASRP software. The main goal is to find fasteners’ configuration with minimal number of fastening elements that provides closing of admissible initial gaps. However, for considered junction type initial gap field is not known a priori though it should be provided as input data for computations. In order to resolve this problem the methodology of random initial gap generation based on available results of gap measurements is developed along with algorithms for optimization of fasteners' configuration on generated initial gaps. Presented paper illustrates how this methodology allows optimizing assembly process for A320 wing.
Technical Paper

EMA Aileron COVADIS Development

2011-10-18
2011-01-2729
In the frame of the COVADIS project (flight control with distributed intelligence and systems integration) supported by the DPAC and where Airbus and Sagem are partners, an electromechanical actuator (EMA) developed and produced by Sagem (SAFRAN group) flew for the first time in January 2011 as an aileron primary flight control of the Airbus A320 flight test Aircraft. With this new type of actuator, in the scope of the preparation of the future Airbus Aircraft, the perspectives of using EMA technologies for the flight control systems is an important potential enabler in the more electrical aircraft. The paper deals with the development phase of this actuator from the definition phase up to the flight tests campaign. It is focused on : COVADIS project context (flight control with distributed intelligence and systems integration), The challenges of the definition phase, Test results presentation (ground and flight).
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Eclipse Framework for an Integrated IMA Tool Chain

2011-10-18
2011-01-2635
Development for the Integrated Modular Avionics (IMA) platform is complex owing to the variety of equipment, vendors and non-uniform tools. The development should be simplified by a model-based harmonized tool environment by means of an integrated set of tools of different type, origin and purpose. Eclipse's flexible and modular architecture seems adequate as a framework for such a harmonized IMA development environment. This article evaluates how Eclipse could practically be utilized for this purpose. The IMA process and development requirements like concurrency, different process roles, and multiple tools are mapped to the Eclipse framework. In addition, open-source extensions for model-based engineering and application development are integrated in the tools chain. In order to test the performance, openness and compatibility of Eclipse and the tools from the IMA development process, six current and future tools are integrated into a prototype of a common Eclipse instance.
Technical Paper

Extension of a 2D Algorithm for Catch Efficiency Calculation to Three Dimensions

2019-06-10
2019-01-2013
Accurate calculation of the catch efficiency β is of paramount importance for any ice accretion calculation since β is the most important factor in determining the mass of ice accretion. A new scheme has been proposed recently in [1] for accurately calculating β on a discretized two-dimensional geometry based on the results of a Lagrangian droplet trajectory integrator (start and impact conditions). This paper proposes an extension to the algorithm in Ref. [1], which is applicable to three-dimensional surfaces with arbitrary surface discretization. The 3D algorithm maintains the positive attributes of the original 2D algorithm, namely mass conservation of the impinging water, capability to deal with overlapping impingement regions and with crossing trajectories, computational efficiency of the algorithm, and low number of trajectories required to reach good accuracy in catch efficiency.
Technical Paper

Flight Parameter Estimation for Augmented Flight Control System Autonomy

2011-10-18
2011-01-2801
In the framework of the aircraft global optimization, for future and upcoming programs, current research interests include more Electrical Flight Control System (EFCS) autonomy for a more easy-to-handle aircraft. A possible solution is to increase the number of redundant flight parameter sensors but to the detriment of the aircraft weight and so to the cost and performances. This paper proposes an algorithm using PLS (Partial Least Squares) to estimate a flight parameter from independent sensor measurements. The estimates are then used as so-called “software” or “virtual” sensors, allowing aircraft weight saving. This algorithm is based on an iterative processing and thus can be used in real time in the embedded flight control computer. Furthermore, the resulting flight parameter estimates can be used to detect failures. Different detection strategies are proposed and results show that this method can lead to robust detections.
Technical Paper

Flight Test Identification Methods for Loads Models and Applications

2011-10-18
2011-01-2763
The Loads discipline contributes to the aircraft structural design by delivering shear, moment and torque (SMT, loads) all across the airframe resulting from application of aircraft airworthiness requirements as laid down in the CS 25/FAR 25 regulations and in some domestic ones. Loads computation considers the maneuver and gust conditions prescribed therein as well as other special design conditions. It is based on very detailed modeling, accounting for aerodynamics in all configurations, mass properties, flexibility of the airframe, flight control laws and retarded laws, hydraulic actuation, and specification of flight control system failure conditions. The resulting shear loads are processed and refined (e.g. nodal loads) and taken into account by the stress department for structural design.
Technical Paper

Force Controlled Assembly of a Compliant Rib

2011-10-18
2011-01-2734
Automation in aerospace industry is often in the form of dedicated solutions and focused on processes like drilling, riveting etc. The common industrial robot has due to limitations in positional accuracy and stiffness often been unsuitable for aerospace manufacturing. One major cost driver in aircraft manufacturing is manual assembly and the bespoke tooling needed. Assembly tasks frequently involve setting relations between parts rather than a global need for accuracy. This makes assembly a suitable process for the use of force control. With force control a robot equipped with needed software and hardware, searches for desired force rather than for a position. To test the usefulness of force control for aircraft assembly an experimental case aligning a compliant rib to multiple surfaces was designed and executed. The system used consisted of a standard ABB robot and an open controller and the assembly sequence was made up of several steps in order to achieve final position.
Technical Paper

Future Concept of Operations: The Airbus ADS-B Perspective

2010-09-30
2010-01-1660
This paper describes the Airbus plans to use ADS-B in the future concept of operations in both the European SESAR and the US NEXTGEN concepts of operations. It details the different steps that are currently considered by Airbus roadmap to deploy ADS-B services and functions. In particular, the following points are described: Use of ADS-B OUT in Non Radar Airspace Use of ADS-B IN and the associated Airbus functions to offer a better Air Traffic Situation Awareness (ATSAW) package: the various applications for airborne, in trail climb/descent procedures or enhanced visual acquisition are particularly detailed. Use of ADS-B for the future Spacing function as currently considered in the initial ASAS implementation for SESAR: the three “Remain Behind”, “Merge at Waypoint then Remain behind” and the “Heading then merge behind” applications are explained.
Technical Paper

How Tools and Process Improved Diagnostic and Prognostic Reaction Time

2015-09-15
2015-01-2589
Modern aircraft, such as A380 or A350 for Airbus, are very well connected in flight to ground stations through wireless communications. For maintenance and operations purpose, the aircraft is programmed to send regularly information such as flight reports based on the BITE messages (Built-In Test Equipment) or standard reports based on the value of physical parameters. Moreover, Airbus is capable of sending requests (called uplinks) to the aircraft to retrieve the value of different parameters in almost real-time. This ability, associated with adequate process, improves significantly the reaction time of the diagnostic and prognostic solutions that Airbus can provide to its customers. Traditionally Health Monitoring is considered useful when the Potential to Functional failure (P-F) interval is greater than one flight cycle.
Technical Paper

Improvement of Ice Accretion Prediction Capability of the ONERA 2D Icing Code

2015-06-15
2015-01-2103
In order to comply with applicable certification regulations, airframers have to demonstrate safe operation of their aircraft in icing conditions. Part of this demonstration is often a numerical prediction of the potential ice accretion on unprotected surfaces. The software ONICE2D, originally developed at the Office National d'Études et de Recherche Aérospatial (ONERA), is used at Airbus for predicting ice accretions on wing-like geometries. The original version of the software uses a flow solution of the 2D full-potential equation on a structured C-grid as basis for an ice accretion prediction. Because of known limitations of this approach, an interface was added between ONICE2D and TAU [6], a hybrid flow solver for the Navier-Stokes equations. The paper first details the approach selected to implement the interface to the hybrid flow solver TAU. It continues to explain how an automatic impingement and ice accretion calculation on multi-element configurations has been achieved.
X