Refine Your Search



Search Results

Journal Article

A Cockpit Point of View on "Human Factors" for a Changing ATM Environment

The vision of SESAR is to integrate and implement new technologies to improve air traffic management (ATM) performance. Enhanced automation and new separation modes characterize the future concept of operations, where the role of the human operator will remain central by integrating more managing and decision-making functions. The expected changes represent challenges for the human actors in the aircraft and on ground and must be taken into account during the development phase. Integrating the human in the ATM system development starting from the early design phase is a key factor for future acceptability. This paper describes the adaptation of currently applied Cockpit Human Factors processes in order to be able to design the aircraft for the future ATM environment.
Technical Paper

A350XWB Icing Certification Overview

The intent of this paper is to provide a general overview of the main engineering and test activities conducted in order to support A350XWB Ice and Rain Protection Systems certification. Several means of compliance have been used to demonstrate compliance with applicable Certification Basis (CS 25 at Amendment 8 + CS 25.795 at Amendment 9, FAR 25 up to Amendment 129) and Environmental protection requirements. The EASA Type Certificate for the A350XWB was received the 30th September 2014 after 7 years of development and verification that the design performs as required, with five A350XWB test aircraft accumulating more than 2600 flight test hours and over 600 flights. The flight tests were performed in dry air and measured natural icing conditions to demonstrate the performance of all ice and rain protection systems and to support the compliance demonstration with CS 25.1419 and CS25.21g.
Technical Paper

Aeronautical Fuel Cell System Application and Associated Standardization Work

Airbus is a leading aircraft manufacturer with the position as technology driver and a distinct customer orientation, broad commercial know-how and high production efficiencies. It is constantly working on further and new development of its products from ecological and economical points of view. Fuel Cell Systems (FCS) on board of an aircraft provide a good opportunity to address both aspects. Based on existing and upcoming research results it is necessary to find trend-setting measures for the industrial implementation and application of this technology. Past and current research efforts have shown good prospects for the industrial implementation and application of the fuel cell technology. Being an efficient source of primarily electric power the fuel cell would be most beneficial when used in conjunction with electrical systems.
Technical Paper

Application of EASA Part 21 Requirement Regarding Change to Aircraft Type Design by Airbus

Airbus business and Extended Enterprise require more and more involvement of design and built suppliers, tier 1 but also across the complete supply chain i.e. tier 2-n. These suppliers are not working only for Aerospace industry and may have different cultures. The pressure on cost and overall efficiency is high and everybody has to cope with obsolescence and new regulation (e.g. REACH (Registration, Evaluation and Authorization and Restriction of Chemicals)). So it became very important for Airbus to clarify the criteria under which a change can be done without Airbus review, and criteria under which a change can be done without Airworthiness authority review.

Care and Repair of Advanced Composites, Second Edition

This second edition has been extensively updated to keep pace with the growing use of composite materials in commercial aviation. A worldwide reference for repair technicians and design engineers, the book is an outgrowth of the course syllabus that was developed by the Training Task Group of SAE's Commercial Aircraft Composite Repair Committee (CACRC) and published as SAE AIR 4938, Composite and Bonded Structure Technician Specialist Training Document. Topics new to this edition include: Nondestructive Inspection (NDI) Methods Fasteners for Composite Materials A Method for the Surface Preparation of Metals Prior to Adhesive Bonding Repair Design Although this book has been written primarily for use in aircraft repair other applications including marine and automotive are also covered.
Technical Paper

Combination of Experimental and Computational Approaches to A320 Wing Assembly

The paper is devoted to the simulation of A320 wing assembly on the base of numerical experiments carried out with the help of ASRP software. The main goal is to find fasteners’ configuration with minimal number of fastening elements that provides closing of admissible initial gaps. However, for considered junction type initial gap field is not known a priori though it should be provided as input data for computations. In order to resolve this problem the methodology of random initial gap generation based on available results of gap measurements is developed along with algorithms for optimization of fasteners' configuration on generated initial gaps. Presented paper illustrates how this methodology allows optimizing assembly process for A320 wing.
Technical Paper

Development of a High Temperature Power Module Technology with SiC Devices for High Density Power Electronics

This paper presents the development of a high density packaging technology for wide band gap power devices, such as silicon carbide (SiC). These devices are interesting candidates for the next aircraft power electronic converters. Effectively they achieve high switching frequencies thanks to the low losses level. High switching frequencies lead to reduce the passive components size and to an overall weight reduction of power converters. Moreover, SiC devices may enable operation at junction temperatures around 250°C. The cooling requirement is much less stringent than for usual Si devices. This might considerably simplify the cooling system, and reduce the overall weight. To achieve the integration requirements for SiC devices, classical wire bonding interconnection is replaced by a stacked packaging using bump interconnection technologies, called sandwich. These technologies offer two thermal paths to drain heat out and present more power integration possibilities.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Eco-efficient Materials for Aircraft Application

Due to the importance of fulfilling the actual and upcoming environmental legislation, it is an Airbus main target to develop eco-efficient materials. Under consideration of the economical effects, these processes will be implemented into the production line. This paper gives an overview of Airbus and its partners research work, the results obtained within the frame of the European funded, integrated technology demonstrator (ITD) ECO Design for Airframe. This ITD is part of the joint technology initiative Clean Sky. Developments with different grade of maturity from “upstream” as the investigation of materials from renewable recourses up to materials now in use in production as low volatile organic compounds cleaner are under investigation. As a basis for future eco-efficient developments an approach for a quantitative life cycle assessment will be demonstrated.
Technical Paper

Evaluation of Small Scale Icing Tunnel Test Results

A test has been performed using a scaled aircraft wing section in an icing tunnel facility. The model had an electro-thermal ice protection system installed. The tests performed considered both anti-icing and de-icing modes of operation. The results have been assessed using numerical codes and the effect of model scaling has been considered. The non-scaled skin thickness of the model was found to modify the predicted behaviour of a full-scale installation, predominantly due to lateral conduction effects. The extent of this has been assessed and recommendations are made as to the performance that may be expected at full-scale.
Technical Paper

Extended Non-Destructive Testing of Composite Bonds

Composite materials are increasingly being used in the manufacturing of structural components in aeronautics industry. A consequent light-weight design of CFRP primary structures requires adhesive bonding as the optimum joining technique but is limited due to a lack of adequate quality assurance procedures. The successful implementation of a reliable quality assurance concept for adhesive bonding within manufacturing and in-service environments will provide the basis for increased use of lightweight composite materials for highly integrated aircraft structures thus minimizing rivet-based assembly. The expected weight saving for the fuselage airframe is remarkable and therefore the driver for research and development of key-enabling technologies. The performance of adhesive bonds mainly depends on the physico-chemical properties of adherend surfaces.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Journal Article

Flexible Tooling for Wing Box Rib Clamping and Drilling

Currently the wing box rib assembly process requires the manual location and temporary fixing of components within product specific jig or fixtures for drilling. After drilling and reaming, parts are separated, cleaned, deburred prior to adding sealant, reclaiming and final bolting, but this may significantly increase cost, manufacturing lead-time, reduces flexibility and cannot usually be economically modified for use on other aircraft types. Due to potential increase in demand for the next generation single isle aircraft, existing tooling solutions have to be improved and new technologies have to be developed. This paper describes the development and testing of flexible tooling to provide clamping and support for drilling wing box ribs to mating rib posts within a restricted environment. Results are presented along with a discussion of the problems that may be encountered during clamping trials.
Technical Paper

Innovation Readiness: Past and Current Drivers in Aeronautical Engineering

This paper proposes a rearview on aeronautical innovation, addresses some 2000-2010 new products, and suggests elements of future vision, serving passengers aspirations. Over 100 years, aeronautics brilliantly domesticated flight: feasibility, safety, efficiency, international travel, traffic volume and noise, allowing airlines to run a business, really connecting real people. Despite some maturations, new developments should extend the notion of passenger service. So far, turbofans became silent and widebodies opened ‘air-bus’ travel for widespread business, tourism or education. Today airports symbolize cities and vitalize regional economies. 2000-2010 saw the full double-decker, the new eco-friendly freighter and electronic ticketing. In technology, new winglets and neo classical engines soon will save short-range blockfuel. In systems and maintenance, integrated modular avionics and onboard data systems give new flexibility, incl by data links to ground.
Technical Paper

Interface Management in Wing-Box Assembly

Gaps between structural components have been a common problem since the start of aviation. This has usually been caused by the manufacturing tolerances of the components in question not being sufficiently tight. An example where such issues arise is in the assembly of a wing skin to rib feet to form an aircraft wing-box, where it is commonly found that, whilst some rib feet are in contact with the wing skin, others are spaced from it. Yet a strong connection between the wing skin and the rib feet is important to maintain the structural strength of the wing-box. To eliminate the existing gaps, the current approach, used in many manufacturing production lines, involves filling in the gaps to the required shape by applying liquid or solid shim to the rib feet. This is a relatively long and expensive process. To overcome these current inherent difficulties in interface management, a method to eliminate the shimming requirement between component interfaces is presented.
Journal Article

OBIGGS for Fuel System Water Management - Proof of Concept

Fuel on-board dehydration during flight technologies has been modeled and experimentally studied on a laboratory testing setup in normal specific gas flow rates range of 0.0002-0.0010 sec-₁. Natural air evolution, ullage blowing and fuel sparging with dry inert gas have been studied. It has been shown that natural air evolution during aircraft climb provides a significant, substantial, but insufficient dehydration of fuel up to 20% relative. Ullage blowing during cruise leads to a constant, but a slow dehydration of fuel with sufficient column height concentration gradient. Dry inert gas sparging held after the end of the natural air evolution or simultaneously with natural air evolution provides rapid fuel dehydration to the maximum possible values. It potentially may eliminate water release and deposition in fuel to -50°C. It has been found that for proper dehydration, necessary and sufficient volume of dry inert gas to volume of fuel ratio is about 1.
Technical Paper

ONICE2D and DROP3D SLD Capability Assessment

In 1994, an ATR-72 crashed at Roselawn, Indiana, USA. It has been speculated that accident was due to Supercooled Large Droplet (SLD) icing. This accident led to a modification of the regulation rules with the definition of the Appendix O which includes freezing drizzle and freezing rain icing conditions. The associated NPRM (Notice of Proposed Rule Making) has been distributed to industry for comments on 29th June 2010 and could be applicable by beginning 2012. In order to comply with this new rule, the simulation tools, as Acceptable Means of Compliance, have to be improved and validated for these conditions. The paper presents the work performed within Airbus to review, improve and assess simulation tools capability to accurately predict physical phenomena related to SLD. It focuses in particular on splashing and bouncing phenomena which have been highlighted as the first order effects.
Technical Paper

On the Synthesis and Validation of Safety Assessment Models

Safety is one of the most important aspects of which we are concerned with in the field of aerospace-systems development. There are a variety of safety assessment activities that are performed throughout a system's lifecycle. Multiple interrelated safety analysis artifacts are generated from the process. However, requirements and guidance for the synthesis and validation of the results of this analysis are insufficient and are not explicit. In traditional system development processes, certification coordination, safety assessment, requirements validation, and implementation verification are generally treated as supporting processes, which are concurrent and interactively dependent throughout the iterative development of a system. In SAE ARP4754A, these processes are stressed as integral processes with traceability between safety requirements and the dependencies between safety assessment activities highlighted as an important concern.

Orbital Drilling Machine for One Way Assembly in Hard Materials

In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.