Refine Your Search

Topic

Author

Search Results

Journal Article

A Cockpit Point of View on "Human Factors" for a Changing ATM Environment

2011-10-18
2011-01-2709
The vision of SESAR is to integrate and implement new technologies to improve air traffic management (ATM) performance. Enhanced automation and new separation modes characterize the future concept of operations, where the role of the human operator will remain central by integrating more managing and decision-making functions. The expected changes represent challenges for the human actors in the aircraft and on ground and must be taken into account during the development phase. Integrating the human in the ATM system development starting from the early design phase is a key factor for future acceptability. This paper describes the adaptation of currently applied Cockpit Human Factors processes in order to be able to design the aircraft for the future ATM environment.
Journal Article

A Process for Delivering Extreme AFP Head Reliability

2019-03-19
2019-01-1349
Every now and then a good idea happens. The Modular head was a great idea and enabled the use of multiple types of AFP heads, ATL, ply cutting, part probing, etc. with the use of a single machine and machining cell. At the time the modular head was developed by Electroimpact circa 2004, the industry assumed (and accepted) that AFP was an unreliable process. It still isn’t as reliable as we’d like. One way of coping with this lack of reliability is to stage more than one head in the AFP cell so that a spare head of the exact same type is ready to jump into action if the head out on the floor has an issue. If the reliability of the AFP process were to increase 10x or 50x, would there still be a business case for the multiple AFP head system? The modular head may still win the day, but the metrics change. For instance, if there was only 20 minutes of down time for every head load, it may no longer be advantageous to have 2 heads of the exact same type in the cell.
Technical Paper

A350XWB Icing Certification Overview

2015-06-15
2015-01-2111
The intent of this paper is to provide a general overview of the main engineering and test activities conducted in order to support A350XWB Ice and Rain Protection Systems certification. Several means of compliance have been used to demonstrate compliance with applicable Certification Basis (CS 25 at Amendment 8 + CS 25.795 at Amendment 9, FAR 25 up to Amendment 129) and Environmental protection requirements. The EASA Type Certificate for the A350XWB was received the 30th September 2014 after 7 years of development and verification that the design performs as required, with five A350XWB test aircraft accumulating more than 2600 flight test hours and over 600 flights. The flight tests were performed in dry air and measured natural icing conditions to demonstrate the performance of all ice and rain protection systems and to support the compliance demonstration with CS 25.1419 and CS25.21g.
Journal Article

AFP Processing of Dry Fiber Carbon Materials (DFP) for Improved Rates and Reliability

2020-03-10
2020-01-0030
Automated fiber placement of pre-impregnated (pre-preg), thermoset carbon materials has been industrialized for decades whereas dry-fiber carbon materials have only been produced at relatively low rates or volumes for large aerospace structures. This paper explores the differences found when processing dry-fiber, thermoset, carbon materials (DFP) as compared to processing pre-preg, thermoset materials with Automated Fiber Placement (AFP) equipment at high rates. Changes to the equipment are required when converting from pre-preg to dry fiber material processing. Specifically, the heating systems, head controls, and tow tension control all must be enhanced when transitioning to DFP processes. Although these new enhancements also require changes in safety measures, the changes are relatively small for high performance systems. Processing dry fiber material requires a higher level of heating, tension control and added safety measures.
Technical Paper

Aeronautical Fuel Cell System Application and Associated Standardization Work

2006-11-07
2006-01-3093
Airbus is a leading aircraft manufacturer with the position as technology driver and a distinct customer orientation, broad commercial know-how and high production efficiencies. It is constantly working on further and new development of its products from ecological and economical points of view. Fuel Cell Systems (FCS) on board of an aircraft provide a good opportunity to address both aspects. Based on existing and upcoming research results it is necessary to find trend-setting measures for the industrial implementation and application of this technology. Past and current research efforts have shown good prospects for the industrial implementation and application of the fuel cell technology. Being an efficient source of primarily electric power the fuel cell would be most beneficial when used in conjunction with electrical systems.
Technical Paper

An Automated Production Fastening System for LGP and Hi-Lok Titanium Bolts for the Boeing 737 Wing Panel Assembly Line

2015-09-15
2015-01-2514
A new automated production system for installation of Lightweight Groove Proportioned (LGP) and Hi-Lock bolts in wing panels has been implemented in the Boeing 737 wing manufacturing facility in Renton, Washington. The system inserts LGP and Hi-Lok bolts into interference holes using a ball screw mechanical squeeze process supported by a back side rod-locked pneumatic clamp cylinder. Collars are fed and loaded onto a swage die retaining pin, and swaging is performed through ball screw mechanical squeeze. Offset and straight collar tools allow the machine to access 99.9% of fasteners in 3/16″, ¼″ and 5/16″ diameters. Collar stripping forces are resolved using a dynamic ram inertial technique that reduces the pull on the work piece. Titanium TN nuts are fed and loaded into a socket with a retaining spring, and installed on Hi-Loks Hi-Lok with a Bosch right angle nut runner.
Technical Paper

Application of EASA Part 21 Requirement Regarding Change to Aircraft Type Design by Airbus

2013-09-17
2013-01-2124
Airbus business and Extended Enterprise require more and more involvement of design and built suppliers, tier 1 but also across the complete supply chain i.e. tier 2-n. These suppliers are not working only for Aerospace industry and may have different cultures. The pressure on cost and overall efficiency is high and everybody has to cope with obsolescence and new regulation (e.g. REACH (Registration, Evaluation and Authorization and Restriction of Chemicals)). So it became very important for Airbus to clarify the criteria under which a change can be done without Airbus review, and criteria under which a change can be done without Airworthiness authority review.
Journal Article

Automated Floor Drilling Equipment for the 767

2014-09-16
2014-01-2270
A new portable floor drilling machine, the 767AFDE, has been designed with a focus on increased reach and speed, ease-of-use, and minimal weight. A 13-foot wide drilling span allows consolidation of 767 section 45 floor drilling into a single swath. A custom CNC interface simplifies machine operations and troubleshooting. Four servo-driven, air-cooled spindles allow high rate drilling through titanium and aluminum. An aluminum space frame optimized for high stiffness/weight ratio allows high speed operation while minimizing aircraft floor deflection. Bridge track tooling interfaces between the machine and the aircraft grid. A vacuum system, offline calibration plate, and transportation dolly complete the cell.
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Book

Care and Repair of Advanced Composites, 3rd Edition

2020-12-31
The new edition of the well known Care and Repair of Advanced Composites, 3rd Edition, improves on the usefulness of this practical guide geared towards the aerospace industry. Keith B. Armstrong, the original lead author of the first edition was still in charge of this project, counting on the expert support of Eric Chesmar, senior composites specialist at United Airlines. Mr. Chesmar is also an active member of SAE International's CACRC (Commercial Aircraft Composite Repair Committee), an elite group of industry experts dedicated to the standardization, safety, security, and efficiency of composite repairs in the airline industry. Mr. Francois Museux (Airbus) and Mr. William F. Cole II also contributed. Care and Repair of Advanced Composites, 3rd Edition, presents a fully updated approach to the training syllabus recommended for repair design engineers and composite repair mechanics.
Book

Care and Repair of Advanced Composites, Second Edition

2005-06-22
This second edition has been extensively updated to keep pace with the growing use of composite materials in commercial aviation. A worldwide reference for repair technicians and design engineers, the book is an outgrowth of the course syllabus that was developed by the Training Task Group of SAE's Commercial Aircraft Composite Repair Committee (CACRC) and published as SAE AIR 4938, Composite and Bonded Structure Technician Specialist Training Document. Topics new to this edition include: Nondestructive Inspection (NDI) Methods Fasteners for Composite Materials A Method for the Surface Preparation of Metals Prior to Adhesive Bonding Repair Design Although this book has been written primarily for use in aircraft repair other applications including marine and automotive are also covered.
Technical Paper

Coated Rivet Dies: A Dramatic Improvement in Rivet Interference Profile

2016-09-27
2016-01-2084
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at the exit of the skin (D2) can often be a problem without exceeding the maximum interference at the exit of the stringer (D4). Softer base materials and harder, higher-strength rivets can compound the problem, while standard manufacturing variations in hardness of part and rivet materials can cause repeatability issues in the process. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the stringer side die dramatically reduces interference at the exit of the stringer, which in some instances resulted in a reduction of over 38%.
Technical Paper

Development of a High Temperature Power Module Technology with SiC Devices for High Density Power Electronics

2011-10-18
2011-01-2620
This paper presents the development of a high density packaging technology for wide band gap power devices, such as silicon carbide (SiC). These devices are interesting candidates for the next aircraft power electronic converters. Effectively they achieve high switching frequencies thanks to the low losses level. High switching frequencies lead to reduce the passive components size and to an overall weight reduction of power converters. Moreover, SiC devices may enable operation at junction temperatures around 250°C. The cooling requirement is much less stringent than for usual Si devices. This might considerably simplify the cooling system, and reduce the overall weight. To achieve the integration requirements for SiC devices, classical wire bonding interconnection is replaced by a stacked packaging using bump interconnection technologies, called sandwich. These technologies offer two thermal paths to drain heat out and present more power integration possibilities.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Eco-efficient Materials for Aircraft Application

2011-10-18
2011-01-2742
Due to the importance of fulfilling the actual and upcoming environmental legislation, it is an Airbus main target to develop eco-efficient materials. Under consideration of the economical effects, these processes will be implemented into the production line. This paper gives an overview of Airbus and its partners research work, the results obtained within the frame of the European funded, integrated technology demonstrator (ITD) ECO Design for Airframe. This ITD is part of the joint technology initiative Clean Sky. Developments with different grade of maturity from “upstream” as the investigation of materials from renewable recourses up to materials now in use in production as low volatile organic compounds cleaner are under investigation. As a basis for future eco-efficient developments an approach for a quantitative life cycle assessment will be demonstrated.
Technical Paper

Electroimpact Automatic Fan Cowl Riveter

2024-03-05
2024-01-1922
The Electroimpact Automatic Fan Cowl Riveter exhibits new and unique design features and automated process capabilities that address and overcome three primary technical challenges. The first challenge is satisfying the customer-driven requirement to access the entire fastening area of the fan cowl doors. This necessitates a unique machine design which is capable of fitting ‘inside’ a fan cowl door radius. The second challenge is determining drill geometry and drill process parameters which can produce consistent and high-quality countersunk holes in varying mixed-metal stack-up combinations consisting of aluminum, titanium, and stainless steel. The third challenge is providing the capability of fully automatic wet installation of hollow-ended titanium rivets.
Journal Article

Enhanced Robotic Automated Fiber Placement with Accurate Robot Technology and Modular Fiber Placement Head

2013-09-17
2013-01-2290
The process of robotic automated fiber placement has been enhanced by combining the technologies of an accurate articulated robotic system with a modular Automated Fiber Placement (AFP) head. The accurate robotic system is comprised of an off-the-shelf 6-axis KUKA Titan KR1000L750 riding on a linear axis with an option for an additional part rotator axis. Each of the robot axes is enhanced with secondary position encoders. The modular fiber placement head features a robotic tool changer which allows quick-change of the process heads and an onboard creel. The quick-change fiber placement head and simplified tow path yields terrific process reliability and flexibility while allowing head preparations to occur offline. The system is controlled by a Siemens 840Dsl CNC which handles all process functions, robot motion, and executes software technologies developed by Electroimpact for superior positional accuracy including enhanced kinematics utilizing a high-order kinematic model.
Technical Paper

Evaluation of Small Scale Icing Tunnel Test Results

2007-09-24
2007-01-3328
A test has been performed using a scaled aircraft wing section in an icing tunnel facility. The model had an electro-thermal ice protection system installed. The tests performed considered both anti-icing and de-icing modes of operation. The results have been assessed using numerical codes and the effect of model scaling has been considered. The non-scaled skin thickness of the model was found to modify the predicted behaviour of a full-scale installation, predominantly due to lateral conduction effects. The extent of this has been assessed and recommendations are made as to the performance that may be expected at full-scale.
Journal Article

Expanding the Use of Robotics in Airframe Assembly Via Accurate Robot Technology

2010-09-28
2010-01-1846
Serial link articulated robots applied in aerospace assembly have largely been limited in scope by deficiencies in positional accuracy. The majority of aerospace applications require tolerances of +/−0.25mm or less which have historically been far beyond reach of the conventional off-the-shelf robot. The recent development of the accurate robot technology represents a paradigm shift for the use of articulated robotics in airframe assembly. With the addition of secondary feedback, high-order kinematic model, and a fully integrated conventional CNC control, robotic technology can now compete on a performance level with customized high precision motion platforms. As a result, the articulated arm can be applied to a much broader range of assembly applications that were once limited to custom machines, including one-up assembly, two-sided drilling and fastening, material removal, and automated fiber placement.
Technical Paper

Extended Non-Destructive Testing of Composite Bonds

2011-10-18
2011-01-2514
Composite materials are increasingly being used in the manufacturing of structural components in aeronautics industry. A consequent light-weight design of CFRP primary structures requires adhesive bonding as the optimum joining technique but is limited due to a lack of adequate quality assurance procedures. The successful implementation of a reliable quality assurance concept for adhesive bonding within manufacturing and in-service environments will provide the basis for increased use of lightweight composite materials for highly integrated aircraft structures thus minimizing rivet-based assembly. The expected weight saving for the fuselage airframe is remarkable and therefore the driver for research and development of key-enabling technologies. The performance of adhesive bonds mainly depends on the physico-chemical properties of adherend surfaces.
X