Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Extensive Correlation Study of Acoustic Trim Packages in Trimmed Body Modeling of an Automotive Vehicle

2019-06-05
2019-01-1511
In the automotive sector, the structure borne noise generated by the engine and road-tire interactions is a major source of noise inside the passenger cavity. In order to increase the global acoustic comfort, predictive simulation models must be available in the design phase. The acoustic trims have a major impact on the noise level inside the car cavity. Although several publications for this kind of simulations can be found, an extensive correlation study with measurement is needed, in order to validate the modeling approaches. In this article, a detailed correlation study for a complete car is performed. The acoustic trim package of the measured car includes all acoustic trims, such as carpet, headliner, seats and firewall covers. The simulation methodology relies on the influence of the acoustic trim package on the car structure and acoustic cavities. The challenge lies in the definition of an efficient and accurate framework for acoustic trimmed bodies.
Journal Article

FE Simulation of the Transmission Loss Performance of Vehicle Acoustic Components at Low and Medium Frequencies

2014-06-30
2014-01-2081
The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment.
Technical Paper

Prediction and Improvement of High Frequency Road Noise of a Mid-Size Sedan

2007-05-15
2007-01-2307
An airborne SEA model to predict high frequency interior noise is built for a mid-size sedan. The 60 KPH running condition is simulated based on this model and then the corresponding result is compared to the measured interior noise. A very similar prediction is found. Also, weak points of sound insulation and effective absorption area in this vehicle are identified using the model. It is shown that in an early design stage and when the proto vehicle is not available yet, the airborne SEA model is very useful to find out weak points of vehicle sound packages.
Technical Paper

Study on Sound Insulation Performance of Vehicle Dash Reinforcements

2014-06-30
2014-01-2085
Dash panel is the most important path of structure-borne and air-borne interior noise for engine-driven vehicles. Reinforcements, which are added to dash panel, are mainly designed in order to suppress the structure-borne noise contribution from the dash panel. However, the effects of dash reinforcements do not seem clear in the viewpoint of air-borne noise. In this paper, the insulation performance of a dash structure with spot-welded reinforcements is studied through several STL (Sound Transmission Loss) tests and STL simulations. The results of this study could be utilized for increasing the sound insulation performance of vehicle body structure.
X