Refine Your Search

Topic

Author

Search Results

Technical Paper

A BIW Structure Research of Light Weight Vehicle with High Stiffness by Steel

2015-03-10
2015-01-0061
The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
Technical Paper

A Comparative Study of Non-Asbestos Organics vs. Low Steel Lomets for Humidity Sensitivity

2012-09-17
2012-01-1788
Non-Asbestos Organic (NAO) disc pads and Low Steel Lomet disc pads were subjected to high and low humidity conditions to discover how humidity affects these two classes of formulations for physical properties, friction, wear and noise characteristics. The 2 classes of formulations show similarities and differences in response to increasing humidity. The humidity effect on deformation of the surface microstructure of the gray cast iron disc is also investigated. Humidity implications for pad quality control and brake testing are discussed.
Technical Paper

A Study for Improving the Acoustic Performance of Dash Isolation Pad Using Hollow Fiber

2013-03-25
2013-01-0101
Usually, fibrous materials with porosity can dissipate the energy of the sound wave penetrating them, so can be the useful sound absorbing materials to reduce the noise in the vehicle. The fibrous materials have been used for the various types of automotive components as the sound absorbing materials, which can be placed close to the noise source, in the noise paths and near the receiver such as passengers. Although all materials can absorb a little amount of sound energy, the term “acoustical material” has been primarily applied to those materials that can provide the higher sound absorption performance above the ordinary levels. One of the examples of fibrous acoustic materials for automotive components is the sound absorbing felt composed of the fibers which have the several characteristics such as the material type, the cross-sectional shape and the fiber density (can be expressed as denier) related to the sound absorbing performance.
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Technical Paper

A Study of the Disc Scoring Generation Principle and Reduction(III)

2019-09-15
2019-01-2112
In the latest works [12], we presented the guideline for reducing Metal pick up(MPU, the main component of disc scoring) by controlling the location of the roughness of disc, the brake pad friction coefficients and the disc slot's size. In this study, the previously studied iron transfer theory to 'Cu free' brake pad and the disc surface roughness controlling methods which are based on the mass production manufacturing process are applied. It is possible to suggest the ways to improve the scoring-free disc without reducing friction coefficient between the disc and pad, and any demerit such as increased wear and airplane noise like conventional slot discs [11].
Technical Paper

A Study on Improvement of Sitting Posture Stability for Heavy Truck Drivers

2018-04-03
2018-01-1319
The driver’s seat in heavy trucks is designed for an upright driving posture with narrow back and cushion angles; thus, the seatback offers very little support. This makes the sitting posture prone to shifting during long trips, leading to loss of comfort and increase in fatigue. Sitting posture stability allows initial posture to be maintained during long drives, and the lack of stability causes fatigue and body pain during the drive. This study confirmed that enhancement of sitting posture stability of the driver’s seat in heavy trucks requires appropriate support from the cushion. The study also analyzed the support characteristics of each part of the cushion, and presented development guidelines of new cushion. Although subjective assessments of sitting posture stability have been performed, this study presented a method for quantitative and efficient assessment of sitting posture stability using the PAM-COMFORT simulation tool and virtual testing.
Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

A Study on the Influence of Plastic Intake Manifold on the Performance and NVH of In-line 4 Cylinder Gasoline Engine

1998-02-01
980728
The primary purpose of using a plastic material instead of conventional aluminum cast for intake manifold is to reduce its weight and cost. Moreover, the use of plastic for intake manifold is regarded as a key for further development of so called an “intake modular system”. As a secondary effect, the engine power can be increased with the help of improved interior surface roughness and lowered air temperature. With regard to NVH, however, plastic intake manifold is considered somewhat negative since it is less rigid and less dense than aluminum one. In this paper, the mechanism that plastic intake manifold affects the performance and NVH of in-line 4 cylinder gasoline engine is presented. In connection with engine performance, air flow efficiency of not only intake manifold itself but also other components of intake system and also cylinder head is evaluated.
Technical Paper

A Study on the Optimum Reduction of Required Brake Fluid Level for Improvement of the High Speed Continuous Brake Distance

2019-09-15
2019-01-2121
The high speed continuous braking distance assessment is the worst condition for thermal fades. This study was conducted to investigate the relationship between fade characteristic and friction materials & brake fluid amount for improving braking distance. So, we used the dynamometer to measure the friction coefficient, braking distance and required brake fluid amount. Through the measurements, the research was carried out as follows. First of all, we studied the influence of friction coefficient about different shapes (chamfer shape, area of the friction material, number of slots) on the same friction material. Secondly, we knew the effects of braking distance by the shape of the friction material. Through these two studies, the shape of the friction material favorable to the fade characteristics was derived. Finally, we measured the amount of required brake fluid in caliper after 10 consecutive braking cycles through Dynamometer.
Technical Paper

An Application of Magnesium Alloy to Passenger Air Bag Housing

2000-03-06
2000-01-1115
To achieve a mass goal and minimize the bell mouthing phenomenon of Passenger Air Bag Housing which takes place when the air bag is in explosive action and detrimental to the safety of passenger side because excessive canister bell mouthing may distort and crash the top surface of instrument panel, a study on the replacing process of a PAB housing to a different material and process was performed. The explosive action of current steel PAB housing was firstly analized to evaluate the reaction forces transferred through the PAB and find out the adaptable material for replacing process. Due to the properties among the die casting alloys, the AM60B alloy was chosen for our new material for PAB housing. Then, stress analysis by the finite element method was performed for a design modification of magnesium one piece housing.
Technical Paper

Analysis of Microorganism Causing Odor in an Air-Conditioning System

2015-04-14
2015-01-0354
This study has been conducted to analyze microbial diversity and its community by using a method of NGS(Next generation sequencing) technique that is not rely on cultivation for microbial community in an core evaporator causing odor of car air conditioner. The NGS without any cultivation method of cultivation, has been developed recently and widely. This method is able to research a microorganism that has not been cultivated. Differently with others, it can get a result that is closer to fact, also can acquire more base sequence with larger volume in relatively shorter time. According to bacteria population analysis of 23 samples, It can be known limited number of bacteria can inhabit in Evaporator core, due to small exposure between bacteria and evaporate, as well as its environmental characteristics. With the population analysis, only certain group of it is forming biofilm in proportion.
Technical Paper

Analysis of Muscle Fatigue for Urban Bus Drivers using Electromyography

2011-04-12
2011-01-0801
Professional bus drivers are highly exposed to physical fatigue and work-related injuries because driving task includes complicated actions that require a variety of ability and cause extreme concentration or strain. For this reason, there has always been some sense of concern regarding driver fatigue, especially for drivers of commercial vehicles. In this study, we have tried to analyze quantitative fatigue degree of urban bus drivers by measuring their physiological signals. The investigation is made up of the following approaches: a traditional questionnaire survey and video-ethnographic method with 4-way cameras. The close-circuit cameras are installed to observe the upper and lower body of real drivers when they are in driving or even resting. This approach can help to understand urban bus drivers' behaviors and fatigue-related issues. Based on the video-ethnographic investigation results above, we have got certain patterns of drivers.
Technical Paper

Combustion Process Analysis in a HSDI Diesel Engine Using a Reduced Chemical Kinetics

2004-03-08
2004-01-0108
The combustion characteristics of a HSDI diesel engine were analyzed numerically using a reduced chemical kinetics. The reaction mechanism consisting of 26 steps and 17 species including the Zel'dovich NOx mechanism for the higher hydrocarbon fuel was implemented in the KIVA-3V. The characteristic time scale model was adopted to account for the effects of turbulent mixing on the reaction rates. The soot formation and oxidation processes are represented by Hiroyasu's model and NSC's model. The validation cases include the homogenous fuel/air mixture and the spray combustion in a constant volume chamber. After the validation, the present approach was applied to the analysis of the spray combustion processes in a HSDI diesel engine. The present approach reasonably well predicts the ignition delay, combustion processes, and emission characteristics in the high-pressure turbulent spray flame-field encountered in the practical HSDI diesel engines.
Technical Paper

Compatibility between Brake Discs and Friction Materials in DTV Generation and Recovery Test

2005-10-09
2005-01-3918
A comparative study was carried out to investigate the DTV (disk thickness variation) behavior according to the types of brake disks (gray iron grade 250 and high-carbon gray iron grade 200, 170) with two typical friction materials (non-steel and low-steel friction materials). To evaluate DTV generation and recovery characteristics, a parasitic drag mode simulating highway driving (off-brake) and a normal braking mode simulating city traffic driving (on-brake) were used with an inertia brake dynamometer. Results showed that DTV and BTV were strongly affected by the microstructure, hardness level and distribution of the gray cast iron with the friction material types. The BTV was reduced in the friction two pairs using non-steel friction materials with high carbon grade disks and low-steel friction materials with high-carbon, low hardness disk. In particular, the pair of low-steel friction materials and high-carbon, low-hardness brake disks was more effective on DTV recovery.
Technical Paper

Control of Diesel Catalyzed Particulate Filter System I (The CPF System Influence Assessment According to a Regeneration Condition)

2005-04-11
2005-01-0661
Environmental standards concerning Suspended Particulate Matter (SPM) are continuously becoming stricter. The light-duty diesel passenger car market is rapidly increasing due to performance improvements and the economic advantages of the diesel engine. To meet EURO 4 diesel passenger car emission regulations, regeneration experiments of a catalyzed particulate filter (CPF) system have been performed with 2.0L common-rail diesel engine. For effective regeneration of the CPF system, we investigated the effects of various regeneration conditions on the system. Conditions such as exhaust gas temperature, oxygen/hydrocarbon concentrations, gas compositions, etc. were investigated. We found that the regeneration efficiency was improved when the exhaust gas temperature increased to more than 700°C during CPF regeneration using engine post injection. An additional amount of post injection increased the exhaust gas temperature and residual hydrocarbon content.
Technical Paper

Corrosion Induced Brake Torque Variation: The Effect from Gray Iron Microstructure and Friction Materials

2005-10-09
2005-01-3919
Brake judder caused by corrosion of gray iron disks was investigated. In this study, the microstructure of the gray iron disks and the friction film developed on the disk surface by commercial friction materials were examined to find the root cause of the corrosion induced brake torque variation. Corrosion of the disk was carried out in an environmental chamber, simulating in-vehicle disk corrosion. Moisture content and acidity of the friction materials were also taken into account for this investigation and brake tests to examine torque variation during brake applications were performed using a single-end brake dynamometer. Results showed that the friction film developed on the disk surface strongly affected the amount of corrosion, while graphite morphology of the gray iron had little effect on the corrosion.
Technical Paper

Developing the Thermoplastic Water Pump and Power Steering Pulley for a Passenger Car

1998-02-01
980736
The thermoplastic automotive pulley has been developed and will be commercialized to high volume production that achieves cost saving and weight reduction over other automotive pulleys in the metal and thermosetting resin by Hyundai Motor Company. Design feature incorporated in this automotive pulley allow it to be manufactured and assembled onto the water pump more efficiently in consequence of design integration with the water pump and power steering pulley. However, the harsh environment and dynamic loads that the thermoplastic pulley has to withstand required extensive CAE analysis and testing of the molded parts and the standard glass reinforced PA was selected for the application to maximize cost savings. The key aspects of the plastic automotive pulley as well as its advantage are presented.
Technical Paper

Development New Organic Composite Materials with Excellent Long-Term High-Temperature Durability and Reliability for Automotive Parts

2018-04-03
2018-01-0151
In recent years, the emerging technology competitions in automotive industry are improving engine efficiency and electronizing for coping with stringent fuel-economy regulations. However, fuel-economy technologies such as engine down-sizing and numerous electronic parts entrust burden plastic materials acing as mainly electric insulation and housing to have to be higher performance, especially temperature endurance. Engineering plastics (EPs) have critical limitations in terms of degradation by heat. Heat-resisting additives in EP are generally used to be anti-degradation as activating non-radical decomposition of peroxide. However, it could not be effective way to impede the degradation in long term heat aging over 1,000 hours at high temperature above 180 °C. In this study, we suggested the new solution called ‘shield effect’ that is purposeful oxidation at the surface and local crystallization of EP to stop prevent penetrating oxygen to inside of that.
Technical Paper

Development of Accelerated Corrosion Test Mode Considering Environmental Condition

2002-03-04
2002-01-1231
Accelerated simulation of vehicle corrosion in a controlled environment not only involves large chambers for actual vehicle tests, but also requires careful consideration of interactions between various parameters given a short time period within which the test is bounded. A new corrosion durability test mode reproducing various field conditions using salt spray, climatic, sunlight simulation and cold chambers has been developed. Verification of the test mode is carried out using four actual vehicle corrosion tests correlated against used cars of Nort h America and Northern Europe. The process of new corrosion test mode is discussed along with the characteristics of the test chambers.
Technical Paper

Development of Aluminum Suspension Part using by High Pressure Casting of Electro-Magnetic Stirring

2018-04-03
2018-01-1394
The weight reduction of the car suspension parts has a direct influence on the ride and handling. However, the application of nonferrous metal materials, such as aluminum and magnesium, which results in a lighter weight of the suspension can lead to an increase in manufacturing costs compared to cast iron. In this study, vertical type high-pressure die casting using by electro-magnetic stirring (EMS) with A356 alloy in the sleeve was used to control the fine microstructure. Process optimization and part development, as well as unit product and automotive assessment were carried out for electro-magnetic stirring methods. Without making the slurry, the mechanical properties were obtained through optimization of process variables UTS 320MPa, YS 239MPa, EL 13.3%. It also succeeded in mass production with minimum cost increase of aluminum suspension components.
X