Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Case Study on the Improvement of Idle Quality of an SUV Car with DI Diesel Engine

2003-05-05
2003-01-1464
With its advantage on the economic and environmental reason the preference of vehicles with diesel engine is growing in the domestic market as well as European market. And automobile makers are enthusiastic in the development of diesel engine vehicles with more comfortable interior atmosphere in order to meet consumers' requirements. Generally, when compared with gasoline engine, diesel engine has much bigger vibratory input to the mounting structure and produces higher level in interior noise and body vibration. In this paper, the improvement of NVH quality at the idle state of an SUV car with DI diesel engine has been achieved through tuning engine mounts based on TPA (Transfer Path Analysis) for low frequency vibration and interior booming noise.
Technical Paper

A Developing Process of Newly Developed Electromagnetic Valve Actuator - Effect of Design and Operating Parameters

2002-10-21
2002-01-2817
Electromagnetic valve (EMV) actuation system is a new technology for the improvement of fuel efficiency and the reduction of emissions in SI engines. It can provide more flexibility in valve event control compared to conventional variable valve actuation devices. However, a more powerful and efficient actuator design is needed for this technology to be applied in mass production engines. This paper presents the effects of design and operating parameters on the thermal, static and dynamic performances of the actuator. The finite element method (FEM) and computer simulation models are used in predicting the solenoid forces, dynamic characteristics and thermal characteristics of the actuator. Effect of design parameters and operating environment on the actuator performance were verified before making prototypes using the analytical models. To verify the accuracy of the simulation model, experimental study is also carried out on a prototype actuator.
Technical Paper

A New Combustion Model Based on Transport of Mean Reaction Progress Variable in a Spark Ignition Engine

2008-04-14
2008-01-0964
In this study a new model is proposed for turbulent premixed combustion in a spark-ignition engine. An independent transport equation is solved for the mean reaction progress variable in a propagation form in KIVA-3V. An expression for turbulent burning velocity was previously given as a product of turbulent diffusivity in unburned gas, laminar flame speed and maximum flame surface density. The model has similarity with the G equation approach, but originates from zone conditionally averaged formulation for unburned gas. A spark kernel grows initially as a laminar flame and becomes a fully developed turbulent flame brush according to a transition criterion in terms of the kernel size and the integral length scale. Simulation of a homogeneous charge pancake chamber engine showed good agreement with measured flame propagation and pressure trace. The model was also applied against experimental data of Hyundai θ-2.0L SI engine.
Technical Paper

A Study of Flame Propagation for Different Combustion Chamber Configurations in an SI Engine

1997-02-24
970876
High speed natural light motion picture records synchronized with head gasket ionization probe and in-cylinder pressure data have been made in the transparent engine of different combustion chamber configurations. For knocking cycles, the head gasket ionization current method simultaneously taken with pressure data was able to find the location of knocking occurrence. To investigate the effects of combustion chamber configurations, the flame propagation experiments for pent-roof combustion chamber with center ignition ( Modified Type I engine ) and modified pent-roof ( Type II engine ) combustion chamber were performed with high speed natural light photography technique. The flame propagation of Modified Type I engine represents more uniform patterns than that of Type II engine. The investigation of knocking combustion was also made possible by observing flame propagation with the measuring techniques that use head gasket ionization probe and in-cylinder pressure data.
Technical Paper

A Study of LNT & Urea SCR on DPF System to Meet the Stringent Exhaust Emission Regulation

2014-10-13
2014-01-2810
In diesel engine development, the new technology is coming out to meet the stringent exhaust emission regulation. The regulation demands more eco-friendly vehicles. Euro6c demands to meet not only WLTP mode, but also RDE(Real Driving Emission). In order to satisfy RDE mode, the new technology to reduce emissions should cover all operating areas including High Load & High Speed. It is a big challenge to reduce NOx on the RDE mode and a lot of DeNOx technologies are being developed. So the new DeNOx technology is needed to cover widened operating area and strict acceleration / deacceleration. The existing LNT(Lean NOx Trap) and Urea SCR(Selective Catalytic Reduction) is necessary to meet the typical NEDC or WLTP, but the RDE mode demands the powerful DeNOx technology. Therefore, the LNT & Urea SCR on DPF was developed through this study.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Technical Paper

A Study of the Half Order Modulation Control for Diesel Combustion Noise by Using Model Based Controller Design

2019-03-25
2019-01-1416
This model based investigation is carried out in order to control the half order modulation for diesel engines using by virtual calibration approach and proposes a feedback control strategy to mitigate cylinder to cylinder imbalance from asymmetric cylinders torque production. Combustion heat release analysis is performed on test data to understand the root cause of observed cylinder to cylinder pressure variations. The injected fuel variations are shown to cause the observed pressure variations between cylinders. A feedback control strategy based on measured crank shaft position is devised to control the half order modulation to balance the combustion pressure profile between cylinders. This control strategy is implemented in Simulink and is tested in closed-loop with the diesel engine model in AMESim. The closed-loop performance indicates that the half order modulation is considerably improved while having minimal impact on the fuel consumption.
Technical Paper

A Study on Automated Tuning of the Head Gasket Coolant Passage Hole of the Gasoline Engine Cooling System Using Optimization Technology

2019-03-25
2019-01-1411
Tuning the size and position of the cooling water holes in the head gasket during engine cooling system development is generally positioned at the final stage of the cooling system hardware design. Until now, the gasket hole tuning operation was dependent on the case study through repetitive CFD analysis. In this process, there was a difference in the optimization level by know-how and expertise of the person in charge. In this study, a gasket hole tuning technique was developed using optimization algorithms to improve the level of optimization. First, select factors and perform screening using the DOE(Design Of Experiments) method, and then find the optimal gasket hole size and arrangement through the optimal design process based on the results of the CFD analysis planned by DOE.
Technical Paper

A Study on Front End Auxiliary Drive(FEAD) System of 48V Mild Hybrid Engine

2018-04-03
2018-01-0414
48V mild hybrid engine is one of major eco-friendly technology for global CO2 reduction policy. The 48V mild hybrid engine enables to operate torque boost, recuperation and ISG status by MHSG(Mild Hybrid Starter and Generator). The FEAD(Front End Auxiliary Drive) system is a very important role to transfer MHSG power to crankshaft at the mild hybrid engine. The conventional FEAD configuration is relatively simple because it transfers power from crankshaft to auxiliary drive components in one direction. But the FEAD configuration of 48V mild hybrid engine is not simple due to bidirectional power transmission between crankshaft and MHSG. For instance, in case of torque boost mode, the tight side of auxiliary belt is entry span of MHSG. On the contrary, the tight side of auxiliary belt is exit span of MHSG at recuperation mode.
Technical Paper

A Study on NVH Performance Improvement of TPE Air Intake Hose Based on Optimization of Design and Material

2019-06-05
2019-01-1491
Environmental and fuel economy regulations (Eu 6d and WLTP RDE) on automobiles have been tightened recently. To counter this regulation, the global automobile industry is focusing on weight reduction, fuel efficient turbo charger, cooled EGR, thermal management, low friction and so on. However, the high-speed turbocharger makes turbulence, and resulting in airflow noise. This noise is transmitted indoor through the air intake system, which adversely affects the vehicle's competitiveness. Therefore, for turbo engine, it is essential to reduce the noise of the air intake system. The air intake system consists of air cleaner, air filter, air intake hose and air duct. The air flow noise of turbo-engine is mainly the emission noise emitted from the walls of air intake system. And the transfer path of turbo noise is in order of air intake hose, air cleaner and air duct. Therefore, it is effective to reduce the noise of the air intake hose located at the beginning of noise transfer path.
Technical Paper

A Study on the Acoustic Simulation for the Components of an Intake System

2011-05-17
2011-01-1520
The reduction of intake noise is a very important factor in controlling the interior noise levels of vehicles, particularly at low and major engine operating speeds. A vehicle intake system generally consists of air cleaner box, hose, duct, and filter element. Also, resonators and porous duct are included, being used to reduce intake noise. For more accurate estimation of the transmission loss (TL), it seems important to develop a CAE model that accurately describes this system. In this paper, simple methods, which can consider the effects of filter element and vibro-acoustic coupling, are suggested which could remarkably improve estimation accuracy of the TL. The filter element is assumed as equivalent semi-rigid porous materials characterized by the flow resistivity defined by the pressure drop, velocity, and thickness.
Technical Paper

A Study on the Influence of Plastic Intake Manifold on the Performance and NVH of In-line 4 Cylinder Gasoline Engine

1998-02-01
980728
The primary purpose of using a plastic material instead of conventional aluminum cast for intake manifold is to reduce its weight and cost. Moreover, the use of plastic for intake manifold is regarded as a key for further development of so called an “intake modular system”. As a secondary effect, the engine power can be increased with the help of improved interior surface roughness and lowered air temperature. With regard to NVH, however, plastic intake manifold is considered somewhat negative since it is less rigid and less dense than aluminum one. In this paper, the mechanism that plastic intake manifold affects the performance and NVH of in-line 4 cylinder gasoline engine is presented. In connection with engine performance, air flow efficiency of not only intake manifold itself but also other components of intake system and also cylinder head is evaluated.
Journal Article

Active Booming Noise Control for Hybrid Vehicles

2016-04-05
2016-01-1122
Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
Journal Article

An Experimental Study on the Effect of Stroke-to-Bore Ratio of Atkinson DISI Engines with Variable Valve Timing

2018-04-03
2018-01-1419
In this study, fundamental questions in improving thermal efficiency of spark-ignition engine were revisited, regarding two principal factors, that is, stroke-to-bore (S/B) ratio and valve timings. In our experiment, late intake valve closing (LIVC) camshaft and variable valve timing (VVT) module for valve timing control were equipped in the single-cylinder, direct-injection spark-ignition (DISI) engine with three different S/B ratios (1.00, 1.20, and 1.47). In these three setups, displacement volume and compression ratio (CR) were fixed. In addition, the tumble ratio for cylinder head was also kept the same to minimize the flow effect on the flame propagation caused by cylinder head while focusing on the sole effect of changing the S/B ratio.
Technical Paper

An On-Line Model for Predicting Residual Gas Fraction by Measuring Intake/Exhaust and Cylinder Pressure in CAI Engine

2008-04-14
2008-01-0540
CAI (Controlled Auto Ignition) combustion is already well known to be advantageous over conventional cycles in that it facilitates higher engine efficiency and has low emission characteristics. The CAI combustion process is mainly governed by in-cylinder RGF (Residual Gas Fraction), therefore achieving good control of in-cylinder RGF is essential in the development of CAI combustion engine. Usually, in-cylinder RGF controlled via low lift cam, short valve duration and negative valve overlap. More importantly on the other hand, accurate and instantaneous prediction of RGF must be done as a prerequisite to control. However, on-line prediction of RGF is not always practical due to the requirement of expensive fast response exhaust gas analyzers in the empirical case or otherwise due to theoretical models which are just too slow for application by means of simulation solving. In this paper, a newly enhanced theoretical model for predicting on-line in-cylinder RGF is introduced.
Technical Paper

An Optimization of Dual Continuously Variable Valve Timing for Reducing Intake Orifice Noise of a SI Engine

2008-04-14
2008-01-0892
For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, various types of system for variable valve timing were developed by many automotive researchers. In this paper, we investigated the relationship between valve timing and intake orifice noise, and suggested how to improve NVH (Noise, Vibration and Harshness) performance as well as engine torque. Some experiments using the engine dynamometer were carried over about 150 different operating conditions. BEM analysis was also conducted in order to calculate acoustic modes of intake system. The results show that the valve timing and overlap of breathing systems have influence on NVH behavior, especially intake orifice noise over whole range of operating conditions. Valve timing and overlap of intake and exhaust valve were optimized in the view of sound quality as well as overall noise level.
Technical Paper

An Optimized Control Strategy for Parallel Hybrid Electric Vehicle

2003-03-03
2003-01-1329
A systematic process of optimization is suggested to obtain the best control maps for a parallel type hybrid electric vehicle. Taking the fuel consumption as the cost function and driving cycle as part of the constraints, an optimization problem for CVT pulley ratio control and motor torque control can be formulated. The change of the battery charge state between the start and end point of the given driving cycle also works as a constraint. In order to see the effect of various control strategies on system behavior and overall fuel consumption, a simulation model was built to accommodate the functional blocks representing hybrid powertrain subsystem components and corresponding control units.
Technical Paper

Analysis of the In-Cylinder Flow, Mixture Formation and Combustion Processes in a Spray-Guided GDI Engine

2008-04-14
2008-01-0142
The purpose of this paper is to investigate the air/fuel mixture formation and combustion characteristics in a spray-guided GDI engine using a commercial code, STAR-CD. This engine adopted the outwardly opening injector located in the center of cylinder head, which forms a hollow cone spray. The spray injection was modeled arranging multiple points using random function along the ring-shaped nozzle exit. To predict the breakup of spray, Reitz-Diwakar's breakup model was used, and the model constants were calibrated against published experimental data in a constant volume chamber. The validated spray models were applied to the analysis of spray behavior and mixture formation process inside the engine combustion chamber under operating condition of ultra-lean mixture (λ ≈ 4). To predict the combustion process, the modified eddy breakup combustion model was applied.
Technical Paper

Assessing Panel Noise Contribution of a Car Engine Using Particle Velocity Sensors

2015-06-15
2015-01-2248
In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
Technical Paper

Closed-Loop Control Method for Monitoring and Improving the Diesel Combustion Noise

2016-06-15
2016-01-1770
This paper presents two closed-loop control methods for monitoring and improving the combustion behavior and the combustion noise on two 4-cylinder diesel engines, in which an in-cylinder pressure and an accelerometer transducer are used to monitor and control them. Combustion processes are developed to satisfy the stricter and stricter regulations on emissions and fuel consumption. These combustion processes are influenced by the factors such as engine durability, driving conditions, environmental influences and fuel properties. Combustion noise could be increased by these factors and is detrimental to interior sound quality. Therefore, it is necessary to develop robust combustion behaviors and combustion noise. For this situation, we have developed two closed-loop control methods. Firstly, a method using in-cylinder pressure data was developed for monitoring and improving the combustion noise of a 1.7L engine. A new index using the values calculated from the data was proposed.
X