Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Study on Automated Tuning of the Head Gasket Coolant Passage Hole of the Gasoline Engine Cooling System Using Optimization Technology

2019-03-25
2019-01-1411
Tuning the size and position of the cooling water holes in the head gasket during engine cooling system development is generally positioned at the final stage of the cooling system hardware design. Until now, the gasket hole tuning operation was dependent on the case study through repetitive CFD analysis. In this process, there was a difference in the optimization level by know-how and expertise of the person in charge. In this study, a gasket hole tuning technique was developed using optimization algorithms to improve the level of optimization. First, select factors and perform screening using the DOE(Design Of Experiments) method, and then find the optimal gasket hole size and arrangement through the optimal design process based on the results of the CFD analysis planned by DOE.
Technical Paper

Accurate Reproduction of Wind-Tunnel Results with CFD

2011-04-12
2011-01-0158
Aerodynamic simulation results are most of the time compared to wind tunnel results. It is too often simplistically believed that it suffice to take the CAD geometry of a car, prepare and run a CFD simulation to obtain results that should be comparable. With the industry requesting accuracies of a few drag counts when comparing CFD to wind tunnel results, a careful analysis of the element susceptible of creating a difference in the results is in order. In this project a detailed 1:4 scale model of the Hyundai Genesis was tested in the model wind tunnel of the FKFS. Five different underbody panel configurations of the car were tested going from a fully paneled car to a car without panels. The impact of the moving versus static ground was also tested, providing over all ten different experimental results for this car model.
Technical Paper

Analysis of Aerodynamic Characteristics of Fan-Type Wheels

2024-04-09
2024-01-2540
This research addresses the pressing need for reducing vehicle aerodynamic resistance, with a specific focus on mitigating wheel and tire resistance, which constitutes approximately 25% of the overall vehicle drag. While the prevailing method for reducing resistance in mass production development involves wheel opening reduction, it inadvertently increases wheel weight and has adverse effects on brake cooling performance. To overcome these challenges, novel complementary resistance reduction methods that can be employed in conjunction with an appropriate degree of wheel opening reduction are imperative. In this study, we introduce symmetrical wheels with a fan-like shape as a solution. The fan configuration influences the surrounding flow by either drawing it in or pushing it out, depending on the direction of rotation. Application of these fan-type wheels to a vehicle's wheels results in the redirection of flow inwards or outwards during high-speed driving due to wheel rotation.
Technical Paper

Design and Development of a Thermoplastic Structural IP

2003-03-03
2003-01-1388
An Instrument Panel (IP) cockpit is one of the most complex vehicle systems, not only because of the large number of components, but also because of the numerous design variations available. The OEM can realize maximum benefit when the IP cockpit is assembled as a module. This requires increased performance attributes including safety, durability, and thermal performance, while meeting styling and packaging constraints, and optimizing the program imperatives of mass and cost. The design concept discussed in this paper consists of two main injection molded parts that are vibration welded to form a stiff structure. The steering column is attached to the cowl and plastic structure by a separate steel column support. The plastic IP structure with integrated ducts is designed and developed to enable the IP cockpit to be a modular system while realizing the benefits of mass and cost reduction.
Technical Paper

Development and optimization of jet impingement on dimpled plate for maximizing cooling performance of an inverter

2024-04-09
2024-01-2216
A need to develop a cooling method with high cooling performance like jet impingement is increased as high power of an inverter is required. Jet Impingement on the dimpled plate would increase thermal performance than that of flat plate. Many previous researchers have dealt with the multi jet impingement on flat plate and some results of the study on dimpled plate evaluate the effect on heat transfer coefficients on several limited cases, making it difficult to apply them to inverter designs. Therefore, in this paper, heat transfer performance, pressure drop, and robustness at micro-scale of jet impingement on the dimpled plate were investigated in detail and the correlations of each performance were proposed. Finally, the optimal design was presented. The cooling performance was influenced by the jet array and the effect of depth and width of the dimples.
Technical Paper

Development of CFD Program for Automotive Ventilation and Defrost Simulation Using OpenFOAM

2020-04-14
2020-01-0154
Numerical simulations are widely used to predict the performance of products in the automotive development process. In particular, ventilation and defrost performances of automotive HVAC system are developed according to design variables and environmental conditions based on CFD (Computational Fluid Dynamics). Recently, as improvement on both computer hardware performance and analysis technology continues, the usage of simulation has been increasing accordingly. However, the cost of software license also increases in such development environments. In this paper, we introduce our CFD program with OpenFOAM, which is the free, open source CFD software, to simulate flow characteristics of ventilation and defrost in automobile. This program includes self-developed GUI similar to commercial CFD code, two-layer realizable κ-ε turbulence model to secure numerical stability, and fluid film model to check the defrost phenomena with time dependence from OpenFOAM libraries.
Technical Paper

Development of the Defrost Performance Evaluation Technology in Automotive Using Design Optimization Analysis Method

2020-04-14
2020-01-0155
In this study, we developed the defrost performance evaluation technology using the multi-objective optimization method based on the CFD. The defrosting is one of the key factors to ensure the drivers’ safety using the forced flow having proper temperature from HVAC during drive. There are many factors affecting the defrost performance, but the configurations of guide-vane and discharge angles in the center DEF(defrosting) duct section which are main design factors of the defrost performance in automotive, so these were set to the design parameters for this study. For the shape-optimization study, the discharge mass flow rate from the HVAC which is transferred to the windshield and the discharge areas in the center defrost duct were set to the response parameters. And then, the standard deviation value of mass flow rate on the selected discharge areas checking the uniformity of discharge flow was set to the objective function to find the optimal design.
Technical Paper

In-Cylinder Flow Field Analysis of a Single Cylinder DI Diesel Engine Using PIV and CFD

2003-05-19
2003-01-1846
We analyzed the in-cylinder flow fields of an optical-access single cylinder diesel engine with the PIV and STAR-CD CFD code. The PIV analysis was carried out in the bottom and side view mode during a compression stroke (ATDC 220°-340°) at 600 rpm. The flow pattern traced by the streamlines, the location of vortex center, the generation and disappearance of tumble, and the squish effect agreed well, as visualized by the PIV and CFD. Vorticity and spatial fluctuation intensities abruptly increased from ATDC 310, reflecting more complicated flow pattern as approaching TDC. In a quantitative sense, the velocity magnitudes obtained from the PIV were, on an average, higher than those from the CFD by 1 m/s approximately and the difference in velocity magnitude between them was about 26 %. In the CFD analysis, the standard high Reynolds κ-ε and RNG k-ε model were adopted for calculation with tetra and hexa or their hybrid meshes, to determine the turbulence model dependencies.
Technical Paper

Investigation of Gap Deflector Efficiency for Reduction of Sunroof Buffeting

2009-05-19
2009-01-2233
The efficiency of a gap-type of deflector for suppressing vehicle sunroof buffeting is studied in this work. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using a CFD/CAA numerical method based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution. In this study the same gap-type deflector configuration is installed on two different types of vehicles, a SUV and a sedan.
Technical Paper

Numerical Study of Combustion Processes and Pollutant Formation in HSDI Diesel Engines

2004-03-08
2004-01-0126
The Representative Interactive Flamelet(RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot and NOx formation. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the Eulerian Particle Flamelet Model using the multiple flamelets has been employed. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on turbulence-chemistry interaction.
Journal Article

On the Aerodynamics of the Notchback Open Cooling DrivAer: A Detailed Investigation of Wind Tunnel Data for Improved Correlation and Reference

2021-04-06
2021-01-0958
Since the introduction of the DrivAer in 2012 this model has become the standard generic aerodynamic benchmark and aerodynamic research model used by automotive OEMs, software vendors and researchers. In 2017, the relevance of the DrivAer has been furthered by the inclusion of a simplified engine bay. Whilst the DrivAer has become the popular standard, the availability of detailed wind tunnel test data, a key enabler for more sophisticated aerodynamic benchmarking and research, remains limited. This paper presents a comprehensive set of wind tunnel test data of the notchback version of the Ford Open Cooling DrivAer, including aerodynamic force measurements, detailed surface pressure measurements and flow field measurements at 3 cross-sections in the vicinity of the model. In addition, the paper will discuss the sensitivity of the experimental data to wind tunnel repeatability and facility-to-facility variations.
Technical Paper

Optimization of Cold Start Operating Conditions in a Stoichiometric GDI Engine with Wall-guided Piston using CFD Analysis

2013-10-14
2013-01-2650
The purpose of this paper is to investigate the mixture formation and optimize the operating conditions under cold start in a stoichiometric (λ=1) GDI engine with wall-guided piston using a 3D commercial code, STAR-CD [8]. For GDI engine under cold start, it can be difficult to carry out the optimization of operating conditions by engine test alone without the understanding of mixture formation inside the combustion chamber. In this study, three cold start conditions of the catalyst heating mode with split injection, the cranking under freezing temperature and acceleration before engine warm-up which causes oil dilution were calculated. In particular, injection strategy for each cold start condition were optimized and compared to the engine test data. The previously validated spray models [6] were applied to the analysis of the spray formation and mixing process inside the combustion chamber.
Technical Paper

Premixed Combustion Modeling in an SI Engine Considering the Burned Gas Composition

2005-05-11
2005-01-2108
Conventional combustion models are suitable for predicting flame propagation for a wrinkled flamelet configuration. But they cannot predict the burned gas composition. This causes the overestimation of burned gas temperature and pressure. A modified method of combustion simulation was established to calculate the chemical composition and to investigate their ultimate fate in the burned gas region. In this work, the secondary products of combustion process, like CO and H2, were considered as well as the primary products like CO2 and H2O. A 3-dimensional CFD program was used to simulate the turbulent combustion and a zero dimensional equilibrium code was used to predict the chemical composition of burned gas. With this simple connection, more reasonable temperature and pressure approaching the real phenomena were predicted without additional time costs.
Technical Paper

Prevention of Cushion Failure of Side Curtain Airbag By CAE

2014-04-01
2014-01-0511
Requirements of side curtain airbag have continued to increase. The revised SINCAP, FMVSS-226 ejection mitigation and small overlap of IIHS had added these requirements. To meet all the requirements, high inflator energy and complex cushion shape became necessary. Such situations increased possibility of cushion failure while deploying. Unfortunately, all the design verification tests are usually completed in a relatively latter stage of development and repetitive testing is needed to consider large dispersion of failure probability distribution. Therefore, verification and design improvement by numerical simulation in an early stage are desirable. A simulation method which can verify CAB deployment was developed in this study. The developed method has three distinct features. Firstly, nonlinear fabric materials and membrane finite elements are used to consider fracture of cushion fabric. Secondly, a pre-simulation procedure had been established.
Journal Article

Thermal Performance of Disc Brake and CFD Analysis

2014-09-28
2014-01-2497
In this paper an effective technology of virtual thermal test of disc brake with several advanced analytic techniques was presented. With the virtual thermal test process, thermal performance of brake system could be easily evaluated without any possibility of great errors that used to happen in the past. In addition to the classical result of CFD, this virtual thermal test produced several valuable applications such as thermal deformation of rotor, optimization of thermal performance and estimation of braking distance.
X