Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Study on Improvement of Sitting Posture Stability for Heavy Truck Drivers

2018-04-03
2018-01-1319
The driver’s seat in heavy trucks is designed for an upright driving posture with narrow back and cushion angles; thus, the seatback offers very little support. This makes the sitting posture prone to shifting during long trips, leading to loss of comfort and increase in fatigue. Sitting posture stability allows initial posture to be maintained during long drives, and the lack of stability causes fatigue and body pain during the drive. This study confirmed that enhancement of sitting posture stability of the driver’s seat in heavy trucks requires appropriate support from the cushion. The study also analyzed the support characteristics of each part of the cushion, and presented development guidelines of new cushion. Although subjective assessments of sitting posture stability have been performed, this study presented a method for quantitative and efficient assessment of sitting posture stability using the PAM-COMFORT simulation tool and virtual testing.
Technical Paper

Analysis of Muscle Fatigue for Urban Bus Drivers using Electromyography

2011-04-12
2011-01-0801
Professional bus drivers are highly exposed to physical fatigue and work-related injuries because driving task includes complicated actions that require a variety of ability and cause extreme concentration or strain. For this reason, there has always been some sense of concern regarding driver fatigue, especially for drivers of commercial vehicles. In this study, we have tried to analyze quantitative fatigue degree of urban bus drivers by measuring their physiological signals. The investigation is made up of the following approaches: a traditional questionnaire survey and video-ethnographic method with 4-way cameras. The close-circuit cameras are installed to observe the upper and lower body of real drivers when they are in driving or even resting. This approach can help to understand urban bus drivers' behaviors and fatigue-related issues. Based on the video-ethnographic investigation results above, we have got certain patterns of drivers.
Journal Article

Development of Fatigue Durability Analysis Techniques for Engine Piston using CAE

2009-04-20
2009-01-0820
A piston in a diesel engine is subject to the high pressure and the high thermal load. The high structural reliability is required to the piston in the automotive diesel engine and it is important to confirm the design parameters of piston in initial design stage. There are lots of research works proposing new geometries, materials and manufacturing techniques for engine pistons. But, the failures of piston occur frequently in development stage. Failure mechanisms are mainly fatigue related. This paper presents failure mechanisms of the high cycle fatigue and low cycle thermal fatigue cracks which occur on the piston during durability test using engine dynamometer. In this study, FE analysis was carried out to investigate the root cause of piston failure. The analysis includes the FE model of the piston moving system, temperature dependent material properties, mechanical and thermal loadings.
Technical Paper

Development of Polymer Composite Battery Pack Case for an Electric Vehicle

2013-04-08
2013-01-1177
A battery pack case of an electric vehicle was developed with a fibrous thermoplastic composite material. Due to cost effectiveness, long-fiber-reinforced thermoplastics by direct process (D-LFT) were adopted. PA6 (Polyamide 6)-based composites were processed using a D-LFT pilot machine at the temperature range between 250° and 290°. Glass and carbon fibers were added in the matrix varying the mixture ratio of the fibers while keeping the weight fraction 40%. The increase of carbon fibers in the mixture increased tensile modulus and strength, however, decreased Izod impacts strength. The fatigue life of developed composites was evaluated by fatigue tests in tension, which were over one million cycles at the maximum fatigue loading less than 60% of the composite strength. Associated with fiber orientation, anisotropic mechanical behavior was investigated in terms of flexural properties and mold shrinkage.
Technical Paper

Development of Reliability Test mode for GDI Fuel Rail

2019-04-02
2019-01-0707
Main role of fuel rail for GDI (Gasoline Direct Injection) system is to store and distribute gasoline between high pressure pump and injector. Under the engine operating condition, fuel pressure and ambient temperature are applied to fuel rail as fatigue load, which can cause fatigue failure. To meet current a global environmental regulation, a fuel injection pressure is gradually increasing. Therefore a fuel rail for GDI engine which is installed between fuel pump and injector must be stronger than now. Also the target reliability of the fuel rail has to be increased than before. Accordingly, fatigue behaviors of fuel rail must be analyzed and expected at the development stage. In this study, a procedure for assessment the fatigue life of GDI fuel rail was developed. With this, fatigue load on the GDI fuel rail can be expected under actual vehicle operating conditions. Furthermore, fatigue life of a part can be verified based on the expected fatigue load.
Technical Paper

Development of Special Heat Treatment to Improve the Bearing Fatigue Life

1999-03-01
1999-01-0289
A new technique of heat treatment is developed for the bearings of automotive transmission and chassis to maximize their service life under contaminated and severe environments. This study demonstrates an improvement of the microstructure of bearing steels by applying special heat treatments. The microstructure is developed by optimizing various heat treating parameters (temperature, cycle time and gas atmosphere, etc.) as well as by modifying the quenching processes (double quenching and press quenching). We obtained a desirable microstructure of dense and fine martensite with optimum levels of retained austenite and compressive residual stress on the subsurface. The size and distribution of carbides and grains are found to be very fine and homogeneous. The endurance test results show that the specimens with new treatment have an excellent fatigue life compared with the conventional bearing samples.
Technical Paper

Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds

2005-04-11
2005-01-1688
A new heat-resistant cast iron alloy has been developed for the exhaust manifolds of new passenger-car diesel engines. This development occurred because operating demands on exhaust manifolds have increased significantly over the past decade. These demands are due to higher exhaust gas temperatures resulting from tighter emission requirements, improved fuel efficiencies, and designs for higher specific engine power. These factors have led to much higher elevated temperature strength and oxidation resistance requirements on exhaust manifold alloys. Additionally, thermal fatigue that occurs directly as a result of thermal expansions and mechanical constraint has become an increasingly important issue. The research detailed in this paper focused on the optimization of the chemical composition of a Si-Mo ductile iron to improve the mechanical and physical properties for use in an engine exhaust manifold.
Technical Paper

Development of a Pre-Validation Mode for Cooling Module by Test and CAE

2018-04-03
2018-01-0466
In case of cooling module rotated by belt, many sources (vehicle’s vibration, belt’s tension and thrust force by rotated fan) are acting on it. Because it is not easy to analyze them individually, there were no rig test modes for pre-validation while developing a new vehicle. In this study, we correlated the strain gauges signal to belt’s tension and fan’s thrust force, and measured acceleration of a vehicle and cooling module by driving a vehicle on the several test roads. In that case of measured acceleration data, we could analyze it by using PDF and construct the representative rig test modes considering vibrational fatigue characteristics by using the FDS. These modes can be utilized while developing a new vehicle without measuring anymore. Also, we could understand each load’s characteristics. It is confirmed that the factors affecting the fatigue were not only the vehicle’s vibration but also the belt’s installation tension.
Technical Paper

Fatigue Life Estimation of Suspension Components using Statistical Method

2009-04-20
2009-01-0080
Depending on the scatter of material properties, geometrical shapes and load conditions, the fatigue life of mechanical components has wide range of scatter although they were tested under same conditions. This scatter is the main reason of different results between observed and predicted fatigue life. This study shows how to estimate the fatigue life distribution by analysis. Dominant factors for fatigue life distributions and their scatter could be obtained by comparing the analysis results and fatigue test results. Applying the scatter of these factors to fatigue analysis, it was possible to predict fatigue life distributions. This will improve the reliability of fatigue life estimation, therefore a more robust and reliable component design is possible.
Technical Paper

Fatigue Strength Evaluation for the Leaf Spring of Commercial Vehicle Considering U Bolt Fixing Force

2007-04-16
2007-01-0853
Suspension system of vehicle is very important because it has an effect on ride comfort and safety. And the leaf spring is one of the major parts of commercial vehicle. By that reason it has to be designed to operate under severe condition to ensure enough endurance. But the traditional method for fatigue design needs repeated fatigue tests for each design according to its geometry, material, and operating condition. This means that a lot of time and money is needed for those tests. Thus, in this paper, a fatigue design method for leaf spring based on numerical analysis is proposed. At first, stress analysis is performed to get the stress under operation load or rig tests. And fatigue analysis is performed to get the fatigue life and to ensure the safety of leaf spring. Through this study, design parameters that play vital role in fatigue life of the leaf spring can be found out.
Technical Paper

Improvement of Durability in HSDI Diesel Cylinder Head

2005-04-11
2005-01-0655
In order to cope with new exhaust emission regulations, automotive industry is interested in research and development of HSDI (High Speed Direct Injection) diesel engines with common rail systems. Since HSDI diesel engine operates under highly loaded condition due to increased power output, cylinder head of HSDI diesel engine is susceptible to high cycle fatigue cracks. In this study, FE analysis was used to find the mechanism of high cycle fatigue crack in the HSDI diesel cylinder head. In order to improve the durability of HSDI diesel cylinder head, the modifications of cylinder head and head bolt pre-load were investigated. Experiments were performed to prove the existence of residual stress created during the heat treatment of cylinder head. The results of experiments showed that residual stress can affect the durability of HSDI diesel cylinder head.
Technical Paper

Improvement of Fatigue Strength of Automatic Transmission Gear by Developing Controlled Rolled Alloy Steel

2000-03-06
2000-01-0614
The controlled rolling process has been introduced to increase strength and toughness of alloy steels for the application of transmission gear. Cr-Mo alloy steel containing 0.02% Nb was controlled rolled in the temperature range of 870-970°C, showed fine austenite grain size, about ASTM No.11, resulted from the effects of recrystallization and Nb(C,N) precipitation. To investigate the effects of grain refinement on mechanical properties, several tests were conducted for the newly developed controlled rolled steel and conventional Ni-Cr-Mo alloy steel after carburizing. The new steel showed 2.1 times higher pitting resistance than the conventional steel. Fatigue limits of new and conventional steels were 950 and 930 MPa respectively. Charpy impact energy of new steel was improved about 35% compared with the conventional steel. Consequently, the pinion gear from the new steel instead of conventional one showed enhanced performance, especially pitting resistance, in dynamometer test.
Technical Paper

Strength Analysis and Fatigue Life Prediction of an Extra Large Dump Truck Deck and Subframe

2013-04-08
2013-01-1211
An engineering strategy to develop a new 27-ton dump truck is introduced in the process of design and analysis. Main engineering concerns in development of the new dump truck are focused on reducing weight as much as 180kg without deteriorating structural strength and fatigue life of its upper body - deck and subframe. To achieve this goal, a stress analysis and a fatigue life prediction based on CAE technique are employed at the early stage of design process. A finite element model of the full vehicle was constructed for the strength analysis. Then the fatigue life was predicted through the strength analysis and an S-N curve of high strength steel. The S-N curve for welded structures made of high strength steel was used along with a prototype vehicle's endurance test in order to set strength targets. As a result, the upper body was successfully developed without any fatigue issues.
X