Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Development of Active Vent Airbag for the Passenger New NCAP

2015-03-10
2015-01-0024
For the robust passenger NCAP(New Car Assessment Program) 5star and the stable neck injury performance, a new concept of passenger airbag has been required. Especially, the deployment stability and the vent hole control technology of the passenger airbag can be improved. According to these requirements, the deployment stability technique has been studied and the ‘Active Vent’ technology has been developed. As a result, these technologies have led to achieve the robust NCAP rating and are applied to the production vehicles.
Technical Paper

A Development of the New Mechanism for Preventing Door Opening in Side Impact Test

2017-03-28
2017-01-1459
During a new vehicle development process, there are several requirements for side impact test that should be confirmed. One of the requirements is the prevention of door opening during side impact test. Even though there are many causes for door opening problem, this study deals with inertia effect by impact energy. Until now, there have been two classical methods to prevent car door from opening in side impact. One is the increment of the inertia resistance by increasing the mass of the balance weight and the spring force. The other is the application of the blocking lever. Unfortunately, in spite of our efforts, the door opening problem occurs occasionally. Therefore, to improve the problem fundamentally, this paper proposes a new blocking lever mechanism that work similar to ball-point pen structure. The proposed mechanism fixes the blocking lever when the opening directional inertia force is applied to the door outside handle during side crash.
Technical Paper

A Research on the Prediction of Door Opening by the Inertia Effect during a Side Impact Crash

2016-04-05
2016-01-1532
The purpose of this study is to develop a dynamic model that can accurately predict the motion of the door handle and counterweight during side impact crash tests. The door locking system, mainly composed of the door outside handle and door latch, is theoretically modeled, and it is assumed that the door outer panel can rotate and translate in all three directions during a side impact crash. Additionally, the numerical results are compared with real crash video footage, and satisfactory qualitative agreement is found. Finally, the simplified test rig that efficiently reflects the real crash test is introduced, and its operation is analyzed.
Technical Paper

An Application of Magnesium Alloy to Passenger Air Bag Housing

2000-03-06
2000-01-1115
To achieve a mass goal and minimize the bell mouthing phenomenon of Passenger Air Bag Housing which takes place when the air bag is in explosive action and detrimental to the safety of passenger side because excessive canister bell mouthing may distort and crash the top surface of instrument panel, a study on the replacing process of a PAB housing to a different material and process was performed. The explosive action of current steel PAB housing was firstly analized to evaluate the reaction forces transferred through the PAB and find out the adaptable material for replacing process. Due to the properties among the die casting alloys, the AM60B alloy was chosen for our new material for PAB housing. Then, stress analysis by the finite element method was performed for a design modification of magnesium one piece housing.
Technical Paper

Development of CAE Methodology for Rollover Sensing Algorithm

2009-04-20
2009-01-0828
The Rollover CAE model is developed for Rollover sensing algorithm in this paper. By using suggested CAE model, it is possible to make sensing data of rollover test matrix and these data can be used for calibration of rollover sensing algorithm. Developed vehicle model consists of three parts: a vehicle parts, an occupant parts and a ground boundary conditions. The vehicle parts include detailed suspension model and FE structure model. The occupant parts include ATD (anthropomorphic test device) male dummy and restraint systems: Curtain Airbag and Seat-Belt. We find analytical value of the suspension model through correlation with vehicle drop test, simulate this model under the conditions of untripped (Embankment, Corkscrew) and tripped (Curb-Trip, Soil-Trip) rollover scenarios. Comparison of the simulation and experimental data shows that the simulation results of suggested CAE model can be substituted for the experimental ones in calibration of rollover sensing algorithm.
Technical Paper

Development of Crash Performance of the Front Bumper System by Adopting Target Cascading Scheme

2018-04-03
2018-01-1054
A practical application of the Target Cascading scheme for the development of the front bumper system of a passenger car is investigated in this paper. The Target cascading in the crash performance of vehicle developments requires a systematic approach, propagating from the desired vehicle-level performance target to appropriate specifications in a system- and/or component-level. To define the values of design specification in the front bumper system, three physical variables are derived by analyzing the vehicle-level performance of the frontal impact under the high-speed (56kph NCAP frontal impact) and the low-speed (15kph RCAR structural test) crash conditions. To ensure the sequential deformation in the high-speed frontal impact and to minimize the damage of the structural member in the low-speed crash, the maximum collapse load of a crash box should be smaller than the collapse load of a front side member.
Technical Paper

Development of Finite Element US-SID and Euro-SID Model

2000-03-06
2000-01-0160
In contrast to the other types of crash simulation, integrated analysis is needed to perform the side impact simulation, and the acquired injury values are so sensitive that they are difficult to assess by the deformed vehicle structure itself. Therefore, the accurate FE side impact dummy (US-SID, Euro-SID) models are needed to predict the various injury values in side impact simulation. In the past, rigid body model or coarse FE model have been used. The advantage of these models is low computing power, but they have lack of predictability especially in the high-speed crash analysis such as NCAP and car-to-car simulations. The deviations are caused by inaccurate geometry and improper material characteristic expression of the side impact dummy models. In this paper, the development of new side impact dummy models and their applications at full car simulations are introduced. Also, the analyses about injury values are illustrated in side impact simulation.
Technical Paper

Development of Two-Shot Injection-Compression Soft Instrument Panel

2015-03-10
2015-01-0065
In order to reduce the cost and weight of the soft-foamed instrument-panel (IP), we developed the new IP which is made by the 2 kinds of injection methods. One is the compression-injection with back-foamed foil inserted, and the other is two-shot injection with the passenger-side airbag (PAB) door. We named it ‘IMX-IP’ which means that all components (‘X’) of the IP with different resins are made In a Mold. The development procedure of this technology was introduced (1) Design of the new injection mold through TRIZ application, (2) Optimization of the injection conditions and back foamed-foil for minimizing the foam loss and thickness deviation, (3) Development of CAE method for two-shot injection compression, (4) Reliability performance test and application to the mass production. The reduction of the processes through the two-shot molding with back foamed-foil inserted made it possible to enhance soft feeling on IP and reduce the cost and weight simultaneously.
Technical Paper

Development of an Optimized Structure for Meeting Pedestrian Protection Requirements

2011-04-12
2011-01-0770
In recent years, pedestrian protection from passenger car impacts has become an important issue. In this study, a lower stiffener system has been implemented in order to reduce lower leg injuries. This system was developed using finite element analyses and impact testing. Injury criteria including bending angle, shear displacement, and deflection were studied in the analyses. These variables were optimized using a DOE (Design of Experiments) sensitivity analysis.
Technical Paper

Evaluation of Biofidelity of the Human Body Model Morphed to Female with Abdominal Obesity in Frontal Crashes

2017-03-28
2017-01-1429
This paper aims to evaluate the biofidelity of a human body FE model with abdominal obesity in terms of submarining behavior prediction, during a frontal crash event. In our previous study, a subject-specific FE model scaled from the 50th percentile Global Human Body Model Consortium (GHBMC) human model to the average physique of three female post mortem human subjects (PMHSs) with abdominal obesity was developed and tested its biofidelity under lap belt loading conditions ([1]). In this study frontal crash sled simulations of the scaled human model have been performed, and the biofidelity of the model has been evaluated. Crash conditions were given from the previous study ([2]), and included five low-speed and three high-speed sled tests with and without anti-submarining device.
Technical Paper

Occupant-to-Occupant Interaction and Impact Injury Risk in Side Impact Crashes

2008-11-03
2008-22-0013
To date, efforts to improve occupant protection in side impact crashes have concentrated on reducing the injuries to occupants seated on the struck side of the vehicle arising from contact with the intruding side structure and/or external objects. Crash investigations indicate that occupants on the struck side of a vehicle may also be injured by contact with an adjacent occupant in the same seating row. Anecdotal information suggests that the injury consequences of occupant-to-occupant impacts can be severe, and sometimes life threatening. Occupant-to-occupant impacts leave little evidence in the vehicle, and hence these impacts can be difficult for crash investigators to detect and may be underreported. The objective of this study was to evaluate the risk of impact injury from occupant-to-occupant impacts in side impact vehicle crashes. The study examined 9608 crashes extracted from NASS/CDS 1993-2006 to investigate the risk of occupant-to-occupant impacts.
X