Refine Your Search

Topic

Author

Search Results

Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

A Simulation Evaluation of VFR Heliport Operations in an Obstacle-Rich Environment

1997-10-13
975532
A study was conducted to investigate the impacts of obstacles on pilot performance, workload, and perceptions of safety in a visual flight rule (VFR) obstacle-rich environment (ORE). The study was conducted using a piloted simulation of a single-rotor, multi-engine helicopter operating in a highly detailed urban visual scene database. The database contained multiple obstacle types, with variable obstacle heights and densities. Nine pilots completed the approaches and departures into and out of a heliport located in the center of the generic urban environment. Two flight routes offered unique presentations of terrain and obstacle types. Obstacle height/density and time of day/lighting parameters were systematically manipulated. A multi-dimensional data collection methodology employing the simultaneous collection of direct aircraft state, pilot performance data, pilot physiological data and pilot subjective responses was employed.
Technical Paper

ATV Thermal Control System

2004-07-19
2004-01-2469
The Automated Transfer Vehicle (ATV) Thermal Control System (TCS) has the task to ensure the required internal environment at level of pressurized module and to thermally control the not pressurised modules and installed equipment, using passive and active control means, in response to the relevant applicable requirements. The ATV vehicle is assially subdivided into three main modules: the Integrated Cargo Carrier (ICC), the Equipped Avionics Bay (EAB) and the Equipped Propulsion Bay (EPB). Each of these modules present elaborated and specific thermal design solutions, to satisfy the different required operative tasks. The extensive thermal analysis campaign performed at ATV vehicle level and in progress for the next Qualification Review (QR) to justify and support the thermal control design solutions and verification status is described.
Journal Article

Advancements of Superplastic Forming and Diffusion Bonding of Titanium Alloys for Heat Critical Aerospace Applications

2020-03-10
2020-01-0033
Titanium’s high strength-to-weight ratio and corrosion resistance makes it ideal for many aerospace applications, especially in heat critical zones. Superplastic Forming (SPF) can be used to form titanium into near-net, complex shapes without springback. The process uses a machined die where inert gas is applied uniformly to the metal sheet, forming the part into the die cavity. Standard titanium alpha-beta alloys, such as 6Al-4V, form at temperatures between 900 and 925°C (1650-1700°F). Recent efforts have demonstrated alloys that form at lower temperatures ranging between 760 and 790°C (1400-1450°F). Lowering the forming temperature reduces the amount of alpha case that forms on the part, which must be removed. This provides an opportunity of starting with a lower gauge material. Lower forming temperatures also limit the amount of oxidation and wear on the tool and increase the life of certain press components, such as heaters and platens.
Technical Paper

An Overview of the Thermal Verification & Flight Data of Integral and Artemis Satellites

2003-07-07
2003-01-2465
The INTEGRAL (International Gamma Ray Astrophysics Laboratory) program is an ESA observatory scientific satellite to be used for gamma ray astronomy, while ARTEMIS (Advanced Data Relay and Technology Mission) is an ESA program to be used for data relay and technology demonstration. ARTEMIS was launched on the 12th of July 2001 with an Ariane V launcher from CSG, after successful completion of the System Environmental test campaign at ESTEC including Solar Simulation Thermal Balance tests on PFM (1998). INTEGRAL has been successfully launched on the 17th of October 2002 with a Proton launcher from Baikonour Cosmodrome, after completion of the System Environmental test campaign at ESTEC including Solar Simulation Thermal Balance tests on STM (1998) and PFM (2002).
Technical Paper

Analysis of the Effect of Age on Shuttle Orbiter Lithium Hydroxide Canister Performance

2005-07-11
2005-01-2768
Recent efforts have been pursued to establish the usefulness of Space Shuttle Orbiter lithium hydroxide (LiOH) canisters beyond their certified two-year shelf life, at which time they are currently considered “expired.” A stockpile of Orbiter LiOH canisters are stowed on the International Space Station (ISS) as a backup system for maintaining ISS carbon dioxide Canisters with older (CO2) control. Canister with older pack dates must routinely be replaced with newly packed canisters off-loaded from the Orbiter Middeck. Since conservation of upmass is critical for every mission, the minimization of canister swap-out rate is paramount. LiOH samples from canisters with expired dates that had been returned from the ISS were tested for CO2 removal performance at the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD). Through this test series and subsequent analysis, performance degradation was established.
Technical Paper

Analysis to Characterize Fresh vs. Aged Shuttle Orbiter Lithium Hydroxide Performance

2006-07-17
2006-01-2048
A recent endeavor has been undertaken to understand the performance of Shuttle Orbiter lithium hydroxide (LiOH) canisters used during STS-114. During this mission, the crew relied on both fresh LiOH and aged LiOH stored on the International Space Station (ISS). Due to the Space Shuttle being grounded after the Columbia accident, the canisters stored on ISS had passed the certified two-year shelf life and were considered expired. The focus of the analysis was to determine the performance of expired LiOH in relation to fresh LiOH and the accuracy of previous predictions1 regarding the performance of expired LiOH. Understanding the performance of expired LiOH is crucial in enabling the extension of the useful life of LiOH canisters. Extending the shelf life has ramifications not only in the current Shuttle program, but in regard to future exploration missions fulfilling the Vision for Space Exploration as well.
Journal Article

Application of Metrology, Statistics, Root Cause Analysis, and Cost of Quality to Enable Quality Improvements and Implementation of Statistical Process Controls for Acceptance of Large Complex Assemblies

2021-03-02
2021-01-0025
For new aircraft production, initial production typically reveals difficulty in achieving some assembly level tolerances which in turn lead to non-conformances at integration. With initial design, tooling, build plans, automation, and contracts with suppliers and partners being complete, the need arises to resolve these integration issues quickly and with minimum impact to production and cost targets. While root cause corrective action (RCCA) is a very well know process, this paper will examine some of the unique requirements and innovative solutions when addressing variation on large assemblies manufactured at various suppliers. Specifically, this paper will first review a completed airplane project (Project A) to improve fuselage circumferential and seat track joins and continue to the discussion on another application (Project B) on another aircraft type but having similar challenges.
Technical Paper

Application of Mixed Reality (MR) Based Remote Assistance for Disposition & Resolution on Critical Nonconformance (NC) for Aircraft Production System during Covid or Post Covid Work Environment

2022-10-05
2022-28-0077
Currently, the Aviation industry uses traditional methods of communication, coordination, & human interaction to give disposition to resolve any kind of nonconformance occurrences which occur during manufacturing or operation of commercial or defense products. This involves increased in-person interaction and additional travel, especially to address the nonconformance issues arising at supplier plants or airports around the globe. During Covid and post-Covid environments, human interactions for the transfer of detailed information at different & distant manufacturing plant locations has been difficult, since support engineering teams (Example: Liaison, Product Review, Quality, Supplier Quality, and Manufacturing Engineering, and/or Service Engineering) have been working remotely.
Technical Paper

Assessment of Lithium Hydroxide Conservation Via International Space Station Control of Orbiter Carbon Dioxide

2002-07-15
2002-01-2271
In order to conserve mass and volume, it was proposed that the International Space Station (ISS) control the level of carbon dioxide (CO2) in the Space Shuttle Orbiter while the Orbiter is docked to the ISS. If successful, this would greatly reduce the number of lithium hydroxide (LiOH) canisters required for each ISS-related Orbiter mission. Because of the impact on the Orbiter Environmental Control and Life Support Subsystem (ECLSS), as well as on the Orbiter flight manifest, a Space Shuttle Program (SSP) analysis was necessary. STS-108 (ISS UF1) pre-flight analysis using the Personal Computer Thermal Analyzer Program (PCTAP) predicted that the ISS would be able to control the level of CO2 in the Orbiter (and throughout the stack) under nominal conditions with no supplemental LiOH required. This analysis assumed that the Carbon Dioxide Removal Assembly (CDRA) located in the U.S.
Journal Article

Best Practices in Establishing Business Case for Implementing Blockchain Solution in Aerospace

2022-03-08
2022-01-0002
The aircraft asset life cycle processes are rapidly being digitalized. Many novel technologies enabled processes of recording these electronic transactions are being emerged. One such technology for recording electronic transactions securely is Blockchain, defined as distributed ledger technologies which includes enterprise blockchain. Blockchain is not widely used in the aerospace industry due to lack of technical understanding and questions about its benefits. Assessment and establishment of business case for implementing blockchain based solution is needed. The aerospace industry is very conservative when it comes to technology adoption and hence it is difficult to change legacy processes. Additionally, the industry is very fragmented. The technology is advancing at a faster rate and applies across geographies under various regulatory oversight which makes blockchain based solution implementation challenging.
Journal Article

Characterization of the Tau Parallel Kinematic Machine for Aerospace Application

2009-11-10
2009-01-3222
A consortium of interested parties has conducted an experimental characterization of two Tau parallel kinematic machines which were built as a part of the EU-funded project, SMErobot1. Characteristics such as machine stiffness, work envelope, repeatability and accuracy were considered. This paper will present a brief history of the Tau parallel machine, the results of this testing and some comment on prospective application to the aerospace industry.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Technical Paper

Columbus to Human Research Facility Hydraulic Compatibility Test: Analysis and Results

2005-07-11
2005-01-3119
ESA and NASA agencies agreed to run an interface compatibility test at the EADS facility between the Columbus flight module and a duplicate ground unit of a currently on-orbit US International Standard Payload Rack, the Human Research Facility (HRF) Flight Prototype Rack (FPR). The purpose of the test was to demonstrate the capability to run US payloads inside the European ISS module Columbus. One of the critical aspects to be verified to ensure suitable operations of the two systems was the combined performance of the hydraulic controls resident in the HRF and Columbus coolant loops. A hydraulic model of the HRF FPR was developed and combined with the Columbus Active Thermal Control System (ATCS) model. Several coupled thermal-hydraulic test cases were then performed, preceded by mathematical analysis, required to predict safe test conditions and to optimize the Columbus valve configurations.
Technical Paper

Development and Implementation of Sol-Gel Coatings for Aerospace Applications

2009-11-10
2009-01-3208
A family of water-based sol-gel coatings has been developed as an environmentally-friendly alternative to traditional aerospace finishing materials and processes. The sol-gel hybrid network is based on a reactive mixture of an organo-functionalized silane with a stabilized zirconium complex. Thin films of the material self-assemble on metal surfaces, resulting in a gradient coating that provides durable adhesion for paints, adhesives, and sealants. Use of the novel coating as a surface pretreatment for the exterior of commercial aircraft has enabled environmental, health, and safety benefits due to elimination of hexavalent chromium, and flight test and early fleet survey data support the laboratory observations that the sol gel coating reduces the occurrence of “rivet rash” adhesion failures. Modifications of the basic inorganic/organic hybrid network have yielded multifunctional coatings with promise for applications such as corrosion control and oxidation protection.
Journal Article

Development of Orbital Drilling for the Boeing 787

2008-09-16
2008-01-2317
The new materials and material combinations such as composites and titanium combinations used on today's new airplanes are proving to be very challenging when drilling holes during manufacturing and assembly operations. Orbital hole drilling technology has shown a great deal of promise for generating burr free, high quality holes in hard metals and in composite materials. This paper will show some of the orbital drilling development work Boeing is doing with Novator to overcome the obstacles of drilling holes in a combination of both hard metals and composites. The paper will include a new portable orbital drilling system designed for these challenging applications as well as some test results achieved with this system.
Technical Paper

ESM Analysis of COTS Laundry Systems for Space Missions

2002-07-15
2002-01-2518
Clothing supply has been examined for historical, current, and planned missions. For STS, crew clothing is stowed on the orbiter and returned to JSC for refurbishment. On Mir, clothing was supplied and then disposed of on Progress for incineration on re-entry. For ISS, the Russian laundry and 75% of the US laundry is placed on Progress for destructive re-entry. The rest of the US laundry is stowed in mesh bags and returned to earth in the Multi Purpose Logistics Module (MPLM) or in the STS middeck. For previous missions, clothing was supplied and thrown away. Supplying clothing without washing dirty clothing will be costly for long-duration missions. An on-board laundry system may reduce overall mission costs, as shown in previous, less accurate, metric studies. Some design and development of flight hardware laundry systems has been completed, such as the SBIR Phase I and Phase II study performed by UMPQUA Research Company for JSC in 1993.
Technical Paper

Electromagnetic Forming of Various Aircraft Components

2005-10-03
2005-01-3307
Electromagnetic forming (EMF) technology has been used lately for the joining and assembly of axisymmetric parts in the aerospace and automotive industries. A few case studies of compressive-type joining processes applied on both aluminum and titanium or stainless tubes for aerospace applications are presented. In the first case study, tests were conducted using 2024-T3 drawn tubes joined with a steel end fitting to form a torque tube using different forming variables including: the fitting geometry, material formability and forming power (KJ). The power setting and the fitting geometry were optimized to improve the fatigue life, torque off, and the axial load capability of the torque tube joints to drive the leading and trailing edge high-lift devices.
Technical Paper

Electronic Systems Health Monitoring Using Electromagnetic Emissions

2004-11-02
2004-01-3161
This paper provides an overview of a method to assess the health of electronic circuits by non-invasively monitoring the electromagnetic emissions. Two phases of laboratory testing have been done to date, during which subtle functional degradations were added to circuitry to simulate several “soft” electronic failure mechanisms which progressively lead to reduced circuitry performance prior to becoming a “hard” failure, detectable by standard built-in tests. The hardware tested included a desktop PC power supply during initial concept feasibility activities, followed by subsequent testing of a COTS triplex channel, distributed, digital flight control system. Lab testing details, data analysis results, and algorithm development are described.
Technical Paper

Experimental Study of Hole Quality in Drilling of Titanium Alloy (6AL-4V)

2002-04-16
2002-01-1517
This paper presents the experimental study of hole quality parameters in the drilling of titanium alloy (6Al-4V). Titanium alloy plates were drilled dry using three types of solid carbide drills i.e. 2-flute helical twist drill, straight flute and three-flute drill. The objective was to study the effects of process parameters like feed rate, speed and drill bit geometry on the hole quality features. Typical hole quality features in a drilling process are the hole quality measures such as surface roughness, hole diameter, hole roundness and burr height. The results indicate that proper selection of speed, feed rate, and drill geometry can optimize metal removal rate and hole quality.
X