Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

An Automated Head Impact Development for Automobile Instrument Panel Application

2016-04-05
2016-01-1370
During the course of automobile Instrument Panel (IP) design development, the occupant head impact CAE simulation on IP are routinely performed to validate FMVSS201 requirements. Based on FMVSS201 requirements, the potential head impact zones on the IP are first identified. Then, the head impact zones are used to locate the various target points that must be impacted on IP. Once the critical target locations on IP are chosen, there are several computational steps that are required to calculate impact angles and head form (HF) center of rotation in reference to target points. Then, CAE engineer performs a repetitive process that involves positioning each individual HF with proper impact angle, assigning initial velocity to HF, and defining surface contacts within the finite element model (FEM). To simplify these lengthy manual steps, a commercially available software HyperMesh® CAE software tool is used to automate these steps. The automation scripting tool is based on TCL programming.
Technical Paper

Comparison of Parametric and Non-Parametric Methods for Determining Injury Risk

2003-03-03
2003-01-1362
This paper contains a review of methods for deriving risk curves from biomechanical data obtained from impact experiments on human surrogates. It covers many of the problems and pitfalls of obtaining realistic human risk curves from impact experiments. The strength and weakness of both parametric and non-parametric methods are evaluated. The limitations of standard analysis of censored impact test data are presented. Methods are given for determining risk curves from both doubly censored data and data obtained from impacts to body regions in which there are more than one mechanism of injury. A detailed set of examples is presented in which different experimental data are analyzed using the Consistent Threshold method and the logistic approach. Finally risk curves for published data are presented for the femur, head, thorax, and neck.
Technical Paper

Considerations of Bio-fidelity Corridors for Lateral Impacts

2005-04-11
2005-01-0308
Developing an effective side impact ATD for assessing vehicle impact responses requires a method for evaluating that ATD's bio-fidelity. ISO/TR9790 has been in existence for some years to serve that purpose. Recently, NHTSA sponsored a research project on the post-mortem human subjects (PMHS) responses subjected to side impact conditions. Based on those newly available PMHS data, Maltese generated a new approach for creating bio-fidelity corridors for human surrogates. The approach incorporates the time factor into the evaluation equation and automates the process (Maltese et al. 2002). This paper serves as the first attempt to look closely at the new bio-fidelity corridor generation process (hereafter referred as the Maltese approach) with respect to its validity, effectiveness, as well as its practicality. The effect of mass scaling was first examined in order to ensure the integrity of the data. The time alignment scheme and the formation of the corridors were then tested.
Technical Paper

Development of a Structural Magnesium Instrument Panel

2004-03-08
2004-01-1486
The development of a structural magnesium instrument panel (IP) beam is presented in this paper. This magnesium IP was designed to be a structural load bearing member in a crash event. Unlike many IPs in production today, this IP helps mid-engine vehicles achieve certain FMVSS 208, US NCAP, IIHS and OEM standards for occupant crash protection. In typical front engine vehicles, the front-end structure absorbs the crash energy with the sandwiched engine acting as rigid body to resist the crash loads and intrusion into passenger compartment. However, in mid engine vehicles, the front-end structure is inadequate to fully absorb the crash energy and at the same time resist intrusion. Without a structural IP beam to resist crash loads, it is unlikely that mid engine vehicles can successfully meet the FMVSS 208, US NCAP, IIHS and OEM standards for occupant crash protection. With that in mind, this magnesium IP was designed as a structural load-bearing member.
Technical Paper

Effects of Different Vehicle Parameters on Car to Car Frontal Crash Fatality Risk Estimated through a Parameterized Model

2006-04-03
2006-01-1134
For the purposes of analyzing and understanding the general effects of a set of different vehicle attributes on overall crash outcome a fleet model is used. It represents the impact response, in a one-dimensional sense, of two vehicle frontal crashes, across the frontal crash velocity spectrum. The parameters studied are vehicle mass, stiffness, intrusion, pulse shape and seatbelt usage. The vehicle impact response parameters are obtained from the NCAP tests. The fatality risk characterization, as a function of the seatbelt use and vehicle velocity, is obtained from the NASS database. The fatality risk is further mapped into average acceleration to allow for evaluation of the different vehicle impact response parameters. The results indicate that the effects of all the parameters are interconnected and none of them is independent. For example, the effect of vehicle mass on fatality risk depends on seatbelt use, vehicle stiffness, available crush, intrusion and pulse shape.
Technical Paper

Information Flow Analysis for Air Bag Sensor Development

2000-03-06
2000-01-1388
A statistical theory is used to quantify the amount of information transmitted from a transducer (i.e., accelerometer) to the air bag controller during a vehicle crash. The amount of information relevant to the assessment of the crash severity is evaluated. This quantification procedure helps determine the effectiveness of different testing conditions for the calibration of sensor algorithms. The amount of information in an acceleration signal is interpreted as a measure of the ability to separate signals based on parameters that are used to assess the severity of an impact. Applications to a linear spring-mass model and to actual crash signals from a development vehicle are presented. In particular, the comparison of rigid barrier (RB) and offset deformable barrier (ODB) testing modes is analyzed. Also, the performance of front-mounted and passenger compartment accelerometers are compared.
Technical Paper

Optimization of Head Impact Waveform to Minimize HIC

2007-04-16
2007-01-0759
To mitigate head impact injuries of vehicle occupants in impact accidents, the FMVSS 201 requires padding of vehicle interior so that under the free-moving-head-form impact, the head injury criterion (HIC) is below the limit. More recently, pedestrian head impact on the vehicle bonnet has been a subject being studied and regulated as requirements to the automobile manufacturers. Over the years, the square wave has been considered as the best waveform for head impacts, although it is impractical to achieve. This paper revisits the head impact topic and challenges the optimality of aiming at the square waveform. It studies several different simple waveforms, with the objective to achieve minimal HIC or minimal crush space required in head-form impacts. With that it is found that many other waveforms can be more efficient and more practical than the square wave, especially for the pedestrian impact.
Technical Paper

Simple Models for Analysis of Curb- and Soil-trip Rollover Events

2006-04-03
2006-01-0722
Simple rigid body dynamics models are created to analyze the curb- and soil-trip types of rollover events and experimental methods that are used to simulate these events. Equations for the models are given, and they are integrated numerically to obtain the solution. Solutions of the models provide a break down of the energy during these events, which exposes the importance of energy absorption, unloading, and friction during the impact-and-roll process. Furthermore, the models are used to derive the critical sliding velocity under different test parameters. They are also used to understand near-critical state responses of the vehicle, and the corresponding characteristics of the signals in the phase space.
X