Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Accurate Measurements of Heat Release, Oxidation Rates, and Soluble Organic Compounds of Diesel Particulates through Thermal Reactions

2010-04-12
2010-01-0814
In an effort of providing better understanding of regeneration mechanisms of diesel particulate matter (PM), this experimental investigation focused on evaluating the amount of heat release generated during the thermal reaction of diesel PM and the concentrations of soluble organic compounds (SOCs) dissolved in PM emissions. Differences in oxidation behaviors were observed for two different diesel PM samples: a SOC-containing PM sample and a dry soot sample with no SOCs. Both samples were collected from a cordierite particulate filter membrane in a thermal reactor connected to the exhaust pipe of a light-duty diesel engine. A differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA) were used to measure the amount of heat release during oxidation, along with subsequent oxidation rates and the concentrations of SOCs dissolved in particulate samples, respectively.
Technical Paper

Characterization of Oxidation Behaviors and Chemical-Kinetics Parameters of Diesel Particulates Relevant to DPF Regeneration

2010-10-25
2010-01-2166
At the current stage of engine technology, diesel engines typically require diesel particulate filter (DPF) systems to meet recent particulate emissions standards. To assure the performance and reliability of DPF systems, profound understanding of filtration and regeneration mechanisms is required. Among extensive efforts for developing advanced DPF systems, the development of effective thermal management strategies, which control the thermal runaway taking place in oxidation of an excess amount of soot deposit in DPF, is quite challenging. This difficulty stems mainly from lack of sufficient knowledge and understanding about DPF regeneration mechanisms, which need detailed information about oxidation of diesel particulate matter (PM). Therefore, this work carried out a series of oxidation experiments of diesel particulates collected from a DPF on a diesel engine, and evaluated the oxidation rates of the samples using a thermo-gravimetric analyzer (TGA).
Technical Paper

Comparing the Performance of GTL/ULSD Blends in Older and Newer Diesel Passenger Cars

2008-06-23
2008-01-1810
Gas-to-Liquids (GTL) is a liquid diesel fuel produced from natural gas, which may have certain attributes different from conventional ultra low sulfur diesel (ULSD). In this investigation, GTL, ULSD, and their blends of 20% and 50% GTL in ULSD were tested in an older Mercedes C Class (MY1999, Euro 2) and a newer Opel Astra (MY2006, Euro 4) diesel vehicle to evaluate the performance in terms of fuel consumption and emissions. Each vehicle was pre-conditioned on-road with one tank full of test fuel before actual testing in a chassis dynamometer facility. Both vehicles were calibrated for European emission standards and operation, and they were not re-calibrated for the fuel tests at Argonne National Laboratory (ANL). In the two-vehicle EPA FTP-75, US06, and Highway drive-cycle tests, the emissions of carbon dioxide on a per-mile basis (g/mi) from all GTL-containing fuels were significantly lower than those from the ULSD.
Technical Paper

Comparison of RCCI Operation with and without EGR over the Full Operating Map of a Heavy-Duty Diesel Engine

2016-04-05
2016-01-0794
Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve high efficiency combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions. A key requirement for extending to high-load operation is reduce the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Natural gas/diesel RCCI engine operation is compared over the EPA Heavy-Duty 13 mode supplemental emissions test with and without EGR.
Technical Paper

Detailed Investigation of Soot Deposition and Oxidation Characteristics in a Diesel Particulate Filter Using Optical Visualization

2013-04-08
2013-01-0528
Detailed soot deposition and oxidation characteristics in a diesel particulate filter (DPF) have been experimentally examined on a unique bench-scale DPF test system that has a visualization window. The filtration and regeneration processes were visualized to examine soot deposition and oxidation behaviors on the filter channel surfaces, along with measurements of pressure drop across the filter. The pressure drop caused by trapped soot was separated from the measured total pressure drop by subtracting the pressure drop caused by the clean filter itself. Then, the soot-derived pressure-drop data, normalized (non-dimensionalized) by the volumetric flow rate, exhaust gas viscosity, and DPF volume, were used to compare filtration and regeneration characteristics at different experimental conditions, independently of flow conditions.
Technical Paper

Development of a 3-D Model for Analyzing the Effects of Channel Geometry on Filtration Characteristics in Particulate Filter System

2013-04-08
2013-01-1583
A three-dimensional (3-D) computational fluid dynamics (CFD) code has been developed to predict flow dynamics and pressure drop characteristics in geometry-modified filters in which the normalized distance of the outlet channel plugs from the inlet has been varied at 0.25, 0.50, and 0.75. In clean filter simulations, the pressure drop in geometry-modified filters showed higher values than for conventional filters because of the significant change in the pressure field formed inside the channel that determines the amount of flow entering the modified channel. This flow through the modified channel depends on plug position initially but has a maximum limit when pressure difference and geometrical change are compromised. For soot loading simulations, a Lagrangian multiphase flow model was used to interpret the hydrodynamics of particle-laden flow with realistic inputs.
Technical Paper

Diesel Exhaust Emissions Control for Light Duty Vehicles

2003-03-03
2003-01-0041
The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented.
Journal Article

Effect of Lubricant Oil Properties on the Performance of Gasoline Particulate Filter (GPF)

2016-10-17
2016-01-2287
Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level and detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology.
Technical Paper

Effects of Exhaust Gas Recirculation on Particulate Morphology for a Light-Duty Diesel Engine

2005-04-11
2005-01-0195
Exhaust gas recirculation (EGR) is a commonly used technique for the reduction of Nitrogen oxide (NOx) emissions from internal combustion engines. However, it is generally known that the use of EGR will cause an increase in emissions of particulate matter (PM). The effects of EGR operating mode on particulate morphology were investigated for a 1.7-liter light-duty diesel engine. This engine was equipped with a turbocharged and inter-cooled air induction system, a common-rail direct fuel injection system, and an EGR system. A rapid prototyping electronic control system (RPECS) was developed to operate this engine at various EGR rates under different conditions (i.e. constant boost pressure, constant oxygen-to-fuel ratio (OFR)). A unique thermophoretic sampling system was employed to collect particulates directly from exhaust manifold after exhaust valves.
Technical Paper

Effects of Exhaust System Components on Particulate Morphology in a Light-duty Diesel Engine

2005-04-11
2005-01-0184
The detailed morphological properties of diesel particulate matter were analyzed along the exhaust system at various engine operating conditions (in a range of 1000 - 2500 rpm and 10 - 75 % loads of maximum torques). A 1.7-L turbocharged light-duty diesel engine was powered with California low-sulfur diesel fuel injected by a common-rail injection system, of which particulate emissions were controlled by an exhaust gas recirculation (EGR) system and two oxidation catalysts. A unique thermophoretic sampling system first developed for internal combustion engine research, a high-resolution transmission electron microscope (TEM), and a customized image processing/data acquisition system were key instruments that were used for the collection of particulate matter, subsequent imaging of particle morphology, and detailed analysis of particle dimensions and fractal geometry, respectively.
Technical Paper

Effects of Load on Emissions and NOx Trap/Catalyst Efficiency for a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1528
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested at constant engine speed (2000 rpm) over a range of loads. Engine-out and tailpipe emissions of gas phase species were measured each second. This allowed examination of the engine-out emissions for late and early injection. Regeneration of the lean NOx trap/catalyst was also examined, as was the efficiency of NOx reduction. NOx stored in the trap/catalyst is released at the leading edge of regenerations, such that the tailpipe NOx is higher than the engine-out NOx for a brief period. The efficiency of NOx reduction was <50% for the lowest loads examined. As the load increased, the efficiency of NOx reduction decreased to near 0% due to excessive catalyst temperatures. Loads sufficiently high to require a rich mixture produce high NOx reduction efficiencies, but in this case the NOx reduction occurs via the three-way catalysts on this vehicle.
Technical Paper

Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

2017-03-28
2017-01-1000
Greenhouse gas regulations and global economic growth are expected to drive a future demand shift towards diesel fuel in the transportation sector. This may create a market opportunity for cost-effective fuels in the light distillate range if they can be burned as efficiently and cleanly as diesel fuel. In this study, the emission performance of a low cetane number, low research octane number naphtha (CN 34, RON 56) was examined on a production 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using only production hardware, both the engine-out and tailpipe emissions were examined during the heavy-duty emission testing cycles using naphtha and ultra-low-sulfur diesel (ULSD) fuels. Without any modifications to the hardware and software, the tailpipe emissions were comparable when using either naphtha or ULSD on the heavy duty test cycles.
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
Technical Paper

Evolution in Size and Morphology of Diesel Particulates Along the Exhaust System

2004-06-08
2004-01-1981
The physical and morphological properties of the particulate matter emitted from a 1.7-liter light-duty diesel engine were characterized by observing its evolution in size and fractal geometry along the exhaust system. A common-rail direct-injection diesel engine, the exhaust system of which was equipped with a turbocharger, EGR, and two oxidation catalysts, was powered with a California low-sulfur diesel fuel at various engine-operating conditions. A unique thermophoretic sampling system, a high-resolution transmission electron microscope (TEM), and customized image processing/data acquisition systems were key instruments that were used for the collection of particulate matter, subsequent imaging of particle morphology, and detailed analysis of particle dimensions and fractal geometry, respectively. The measurements were carried out at four different positions along the exhaust pipe.
Technical Paper

Fuel Property Impacts on Diesel Particulate Morphology, Nanostructures, and NOx Emissions

2007-04-16
2007-01-0129
Detailed diesel particulates morphology, nanostructures, fractal geometry, and nitrogen oxides (NOx) emissions were analyzed for five different test fuels in a 1.7-L, common-rail direct-injection diesel engine. The accurately formulated fuels permit the effects of sulfur, paraffins, aromatics, and naphthene concentrations to be determined. A novel thermophoretic sampling technique was used to collect particulates immediately after the exhaust valves. The morphology and nanostructures of particulate samples were examined, imaged with a high-resolution transmission electron microscope (HRTEM), and quantitatively analyzed with customized digital image processing/data acquisition systems. The results show that the particle sizes and the total mass of particulate matter (PM) emissions correlate most strongly with the fuels' aromatics and sulfur content.
Technical Paper

Gaseous and Particulate Emissions from a Vehicle with a Spark-Ignition Direct-Injection Engine

1999-03-01
1999-01-1282
Particulate and gaseous emissions from a Mitsubishi Legnum GDI™ wagon were measured for FTP-75, HWFET, SC03, and US06 cycles. The vehicle has a 1.8-L spark-ignition direct-injection engine. Such an engine is considered a potential alternative to the compression-ignition direct-injection engine for the PNGV program. Both engine-out and tailpipe emissions were measured. The fuels used were Phase-2 reformulated gasoline and Indolene. In addition to the emissions, exhaust oxygen content and exhaust-gas temperature at the converter inlet were measured. Results show that the particulate emissions are measurable and are significantly affected by the type of fuel used and the presence of an oxidation catalyst. Whether the vehicle can meet the PNGV goal of 0.01 g/mi for particulates depends on the type of fuel used. Both NMHC and NOx emissions exceed the PNGV goals of 0.125 g/mi and 0.2 g/mi, respectively. Meeting the NOx goal will be especially challenging.
Technical Paper

Mixing-Limited Combustion of Alcohol Fuels in a Diesel Engine

2019-04-02
2019-01-0552
Diesel-fueled, heavy-duty engines are critical to global economies, but unfortunately they are currently coupled to the rising price and challenging emissions of Diesel fuel. Public awareness and increasingly stringent emissions standards have made Diesel OEMs consider possible alternatives to Diesel, including electrification, fuel cells, and spark ignition. While these technologies will likely find success in certain market segments, there are still many applications that will continue to require the performance and liquid-fueled simplicity of Diesel-style engines. Three-way catalysis represents a possible low-cost and highly-effective pathway to reducing Diesel emissions, but that aftertreatment system has typically been incompatible with Diesel operation due to the prohibitively high levels of soot formation at the required stoichiometric fuel-air ratios. This paper explores a possible method of integrating three-way catalysis with Diesel-style engine operation.
Technical Paper

Morphological Examination of Nano-Particles Derived from Combustion of Cerium Fuel-Borne Catalyst Doped with Diesel Fuel

2007-07-23
2007-01-1943
This experimental work focuses on defining the detailed morphology of secondary emission products derived from the combustion of cerium (Ce) fuel-borne catalyst (FBC) doped with diesel fuel. Cerium is often used to promote the oxidation of diesel particulates collected in diesel aftertreatment systems, such as diesel particulate filters (DPFs). However, it is suspected that the secondary products could be emitted from the vehicle tailpipe without being effectively filtered by the aftertreatment systems. In this work, these secondary emissions were identified by means of a high-resolution transmission electron microscope (TEM), and their properties were examined in terms of morphology and chemistry. In preparation for fuel doping, a cerium-based aliphatic organic compound solution was mixed with a low-sulfur (110 ppm) diesel fuel at 50 ppm in terms of weight concentration.
Technical Paper

Parametric Examination of Filtration Processes in Diesel Particulate Filter Membranes with Channel Structure Modification

2010-04-12
2010-01-0537
The limited spatial area in conventional diesel particulate filter (DPF) systems requires frequent regenerations to remove collected particulate matter (PM) emissions, consequently resulting in higher energy consumption and potential material failure. Due to the complex geometry and difficulty in access to the internal structure of diesel particulate filters, in addition, many important characteristics in filtration processes remain unknown. In this work, therefore, the geometry of DPF membrane channels was modified basically to increase the filtration areas, and their filtration characteristics were evaluated in terms of pressure drop across the DPF membranes, effects of soot loading on pressure drop, and qualitative soot mass distribution in the membrane channels. In this evaluation, an analytical model was developed for pressure drop, which allowed a parametric study with those modified membranes.
X