Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Advanced Automatic Transmission Model Validation Using Dynamometer Test Data

2014-04-01
2014-01-1778
As a result of increasingly stringent regulations and higher customer expectations, auto manufacturers have been considering numerous technology options to improve vehicle fuel economy. Transmissions have been shown to be one of the most cost-effective technologies for improving fuel economy. Over the past couple of years, transmissions have significantly evolved and impacted both performance and fuel efficiency. This study validates the shifting control of advanced automatic transmission technologies in vehicle systems by using Argonne National Laboratory's model-based vehicle simulation tool, Autonomie. Different midsize vehicles, including several with automatic transmission (6-speeds, 7-speeds, and 8-speeds), were tested at Argonne's Advanced Powertrain Research Facility (APRF). For the vehicles, a novel process was used to import test data.
Technical Paper

Ambient Temperature (20°F, 72°F and 95°F) Impact on Fuel and Energy Consumption for Several Conventional Vehicles, Hybrid and Plug-In Hybrid Electric Vehicles and Battery Electric Vehicle

2013-04-08
2013-01-1462
This paper determines the impact of ambient temperature on energy consumption of a variety of vehicles in the laboratory. Several conventional vehicles, several hybrid electric vehicles, a plug-in hybrid electric vehicle and a battery electric vehicle were tested for fuel and energy consumption under test cell conditions of 20°F, 72°F and 95°F with 850 W/m₂ of emulated radiant solar energy on the UDDS, HWFET and US06 drive cycles. At 20°F, the energy consumption increase compared to 72°F ranges from 2% to 100%. The largest increases in energy consumption occur during a cold start, when the powertrain losses are highest, but once the powertrains reach their operating temperatures, the energy consumption increases are decreased. At 95°F, the energy consumption increase ranges from 2% to 70%, and these increases are due to the extra energy required to run the air-conditioning system to maintain 72°F cabin temperatures.
Technical Paper

An Examination of Spray Stochastics in Single-Hole Diesel Injectors

2015-09-01
2015-01-1834
Recent advances in x-ray spray diagnostics at Argonne National Laboratory's Advanced Photon Source have made absorption measurements of individual spray events possible. A focused x-ray beam (5×6 μm) enables collection of data along a single line of sight in the flow field and these measurements have allowed the calculation of quantitative, shot-to-shot statistics for the projected mass of fuel sprays. Raster scanning though the spray generates a two-dimensional field of data, which is a path integrated representation of a three-dimensional flow. In a previous work, we investigated the shot-to-shot variation over 32 events by visualizing the ensemble standard deviations throughout a two dimensional mapping of the spray. In the current work, provide further analysis of the time to steady-state and steady-state spatial location of the fluctuating field via the transverse integrated fluctuations (TIF).
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
Technical Paper

Automated Vehicle Perception Sensor Evaluation in Real-World Weather Conditions

2023-04-11
2023-01-0056
Perception in adverse weather conditions is one of the most prominent challenges for automated driving features. The sensors used for mid-to-long range perception most impacted by weather (i.e., camera and LiDAR) are susceptible to data degradation, causing potential system failures. This research series aims to better understand sensor data degradation characteristics in real-world, dynamic environmental conditions, focusing on adverse weather. To achieve this, a dataset containing LiDAR (Velodyne VLP-16) and camera (Mako G-507) data was gathered under static scenarios using a single vehicle target to quantify the sensor detection performance. The relative position between the sensors and the target vehicle varied longitudinally and laterally. The longitudinal position was varied from 10m to 175m at 25m increments and the lateral position was adjusted by moving the sensor set angle between 0 degrees (left position), 4.5 degrees (center position), and 9 degrees (right position).
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Technical Paper

Challenges in Reforming Gasoline: All Components are Not Created Equal

2001-05-07
2001-01-1915
Gasoline is a complex fuel. Many of the constituents of gasoline that are beneficial for the internal combustion engine (ICE) are expected to be challenging for on-board reformers in fuel-cell vehicles. To address these issues, the autothermal reforming of gasoline and individual components of gasoline has been investigated. The results indicate that aromatic components require higher temperatures and longer contact times to reform than paraffinic components. Napthenic components require higher temperatures to reform, but can be reformed at higher space velocities than paraffinic components. The effects of sulfur are dependent on the catalyst. These results suggest that further evolution of gasoline could reduce the demands on the reformer and provide a better fuel for a fuel-cell vehicle.
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Technical Paper

Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine

2018-09-10
2018-01-1672
The CFR F1 engine is the standard testing apparatus used for rating the research octane number (RON) of gasoline fuels. Unlike the motor octane number (MON) method, where the intake port temperature after the carburetor is controlled by an electric heater, the mixture temperature can vary during the RON test due to the heat of vaporization (HoV) of the fuel. Ethanol is receiving increasing attention as a high octane and high HoV fuel component. This work presents an analysis of the combustion characteristics during the RON rating of ethanol fuel blends according to the standard ASTM D2699 method, highlighting the effects of ethanol concentration and base fuel composition. All fuels were blended to a constant RON of 98. Ethanol levels varied from 0 to 50 vol% and the base fuels were surrogate blends composed of primary reference fuels (PRF), toluene standardization fuels (TSF), and a four component gasoline surrogate.
Technical Paper

Comparison between Rule-Based and Instantaneous Optimization for a Single-Mode, Power-Split HEV

2011-04-12
2011-01-0873
Over the past couple of years, numerous Hybrid Electric Vehicle (HEV) powertrain configurations have been introduced into the marketplace. Currently, the dominant architecture is the power-split configuration, notably the input splits from Toyota Motor Sales and Ford Motor Company. This paper compares two vehicle-level control strategies that have been developed to minimize fuel consumption while maintaining acceptable performance and drive quality. The first control is rules based and was developed on the basis of test data from the Toyota Prius as provided by Argonne National Laboratory's (Argonne's) Advanced Powertrain Research Facility. The second control is based on an instantaneous optimization developed to minimize the system losses at every sample time. This paper describes the algorithms of each control and compares vehicle fuel economy (FE) on several drive cycles.
Journal Article

Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography

2014-04-01
2014-01-1412
A full understanding and characterization of the near-field of diesel sprays is daunting because the dense spray region inhibits most diagnostics. While x-ray diagnostics permit quantification of fuel mass along a line of sight, most laboratories necessarily use simple lighting to characterize the spray spreading angle, using it as an input for CFD modeling, for example. Questions arise as to what is meant by the “boundary” of the spray since liquid fuel concentration is not easily quantified in optical imaging. In this study we seek to establish a relationship between spray boundary obtained via optical diffused backlighting and the fuel concentration derived from tomographic reconstruction of x-ray radiography. Measurements are repeated in different facilities at the same specified operating conditions on the “Spray A” fuel injector of the Engine Combustion Network, which has a nozzle diameter of 90 μm.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

Correlation of Split-Injection Needle Lift and Spray Structure

2011-04-12
2011-01-0383
While the use of injection strategies utilizing multiple injection events for each engine cycle has become common, there are relatively few studies of the spray structure of split injection events. Optical spray measurements are particularly difficult for split injection events with a short dwell time between injections, since droplets from the first injection will obscure the end of the first and the start of the second injection. The current study uses x-ray radiography to examine the near-nozzle spray structure of split injection events with a short dwell time between the injection events. In addition, x-ray phase-enhanced imaging is used to measure the injector needle lift vs. time for split injections with various dwell timings. Near the minimum dwell time needed to create two separate injection events, the spray behavior is quite sensitive to the dwell time.
Technical Paper

Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations

2016-04-05
2016-01-0593
Reynolds-averaged Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result for the majority of turbulent flows. This could lead to the conclusion that multi-cycle internal combustion engine (ICE) simulations performed using RANS must exhibit a converging numerical solution after a certain number of consecutive cycles. However, for some engine configurations unsteady RANS simulations are not guaranteed to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS modeling to simulate multiple engine cycles, the cycle-to-cycle variations (CCV) generated from different initial conditions at each cycle are not damped out even after a large number of cycles. A single-cylinder GDI research engine is simulated using RANS modeling and the numerical results for 20 consecutive engine cycles are evaluated for two specific operating conditions.
Technical Paper

Cylinder Pressure Analysis of a Diesel Engine Using Oxygen-Enriched Air and Emulsified Fuels

1990-09-01
901565
Analytical studies of oxygen-enriched diesel engine combustion have indicated the various benefits as well as the need for using cheaper fuels with water addition. To verify analytical results, a series of single-cylinder diesel engine tests were conducted to investigate the concepts of oxygen enriched air (OEA) for combustion with water emulsified fuels. Cylinder pressure traces were obtained for inlet oxygen levels of 21% to 35% and fuel emulsions with water contents of 0% to 20%. Data for emulsified fuels included no. 2 and no. 4 diesel fuels. The excess oxygen for the tests was supplied from compressed bottled oxygen connected to the intake manifold. The cylinder pressure data was collected with an AVL pressure transducer and a personal computer-based data logging system. The crank angle was measured with an optical encoder. In each data run, 30 consecutive cycles were recorded and later averaged for analysis.
Journal Article

Cylinder-to-Cylinder Variations in Power Production in a Dual Fuel Internal Combustion Engine Leveraging Late Intake Valve Closings

2016-04-05
2016-01-0776
Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode featuring a port-injection and a direct-injection fueling system in order to improve fuel efficiency and engine performance. Experimental results show increased cylinder-to-cylinder variation in IMEP as IVC timing moves from 570°ATDC to 610°ATDC, indicating an increasingly uneven fuel distribution between cylinders.
Technical Paper

DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations

2005-11-01
2005-01-3511
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
X